New Methods for the Simulation and Analysis of Waves

波浪模拟和分析的新方法

基本信息

  • 批准号:
    9971772
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

New Methods for the Simulation and Analysis of Waves Thomas Hagstrom 9971772We will develop, analyze, implement and apply new methods for the solutionof wave propagation problems. Our primary focus is on numerical techniques which can efficiently and reliably utilize the capabilities of modern computers to simulate problems whose scale has hitherto precluded their detailed study. A large scale wave propagation problem will generally be given in an extended spatial and/or temporal domain. In engineering applications, the domain will also usually involve bodies with complex shapes. These features all pose difficult challenges to numerical algorithms. The radiation of energy to the far field is a feature of most wave systems and is associated with large spatial domains. To make computational ssolutions feasible, the domain must be artificially truncated. This truncation introduces errors which have been difficult to estimate or reduce. In recent years, we, along with other researchers, have developed new techniques for imposing accurate truncations, which solve this problem in some special but important cases. As part of this project, we will extend the applicability of these new methods. Long time simulations also make special demands on the accuracy of numerical approximations. In particular, small inaccuracies in the wave speeds or the effects of numerical damping will generally accumulate to produce large errors. Therefore, highly accurate methods must be used. However, these are typically difficult to apply in complex geometries. We will work on the development and analysis of new methods with high orders of accuracy which can be more easily utilized near bodies with complicated shapes. Finally, we will study some basicproblems related to the existence, smoothness, and asymptotic approximability of solutions to the compressible Navier-Stokes equations, which describe the motion of most common liquids and gases. We are particularly interested in flows which are slow in comparison with the speed of sound. Such flows are typically modeled by the incompressible Navier-Stokes equations, whose mathematical theory, though still quite incomplete, is better developed. We, however, retain the compressible effects, and study both theoretically and by simulation the relationship between the solutions of the two systems. In our work we focus on some specific physical systems, primarily from thefields of acoustics and fluid dynamics. As such, we hope to enhance our capability to use high-performance computing to predict the production andinteraction of sound with fluid flows. However, due to the general importance of wave theory and the underlying unity of its mathematical description, most of our results will be directly applicable in diverse areas such as electromagnetism and elasticity. In the long term, an improved capability to simulate waves will have important applications including the reduction of aircraft noise, the improvement of radar and sonar imaging, the predictabilityof the effects of earthquakes, and the design of better communications systems.
波模拟和分析的新方法 Thomas Hagstrom 9971772我们将开发、分析、实施和应用新方法来解决波传播问题。我们的主要关注点是数值技术,它可以有效、可靠地利用现代计算机的功能来模拟迄今为止规模无法进行详细研究的问题。 大规模波传播问题通常在扩展的空间和/或时间域中给出。在工程应用中,该领域通常还涉及具有复杂形状的物体。这些特征都对数值算法提出了严峻的挑战。能量辐射到远场是大多数波系统的一个特征,并且与大空间域相关。为了使计算解决方案可行,必须人为地截断域。这种截断引入了难以估计或减少的错误。近年来,我们与其他研究人员一起开发了实施精确截断的新技术,在一些特殊但重要的情况下解决了这个问题。作为该项目的一部分,我们将扩展这些新方法的适用性。长时间的模拟也对数值近似的准确性提出了特殊要求。特别是,波速的微小误差或数值阻尼的影响通常会累积起来产生大的误差。因此,必须使用高精度的方法。然而,这些通常难以应用于复杂的几何形状。我们将致力于开发和分析高精度的新方法,这些方法可以更容易地在形状复杂的物体附近使用。最后,我们将研究与可压缩纳维-斯托克斯方程解的存在性、平滑性和渐近近似性相关的一些基本问题,这些方程描述了最常见的液体和气体的运动。我们对与声速相比慢的流动特别感兴趣。这种流动通常通过不可压缩的纳维-斯托克斯方程来建模,其数学理论虽然仍然相当不完整,但已经得到了更好的发展。然而,我们保留了可压缩效应,并通过理论和模拟研究了两个系统的解之间的关系。 在我们的工作中,我们关注一些特定的物理系统,主要来自声学和流体动力学领域。因此,我们希望增强使用高性能计算来预测声音与流体流动的产生和相互作用的能力。然而,由于波动理论的普遍重要性及其数学描述的基本统一性,我们的大部分结果将直接应用于电磁学和弹性等不同领域。从长远来看,改进的波浪模拟能力将具有重要的应用,包括减少飞机噪音、改进雷达和声纳成像、地震影响的可预测性以及更好的通信系统的设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Hagstrom其他文献

Thomas Hagstrom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Hagstrom', 18)}}的其他基金

Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Numerical Methods for Waves: Nonlocal, Nonlinear, and Multiscale Systems
波的数值方法:非局部、非线性和多尺度系统
  • 批准号:
    2012296
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Robust High-Order Methods for Wave Equations in the Time Domain
时域波动方程的鲁棒高阶方法
  • 批准号:
    1418871
  • 财政年份:
    2014
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: Simulation and Analysis of Turbulent Jet Noise Using Arbitrary-Order Hermite Methods
合作研究:使用任意阶 Hermite 方法模拟和分析湍流射流噪声
  • 批准号:
    0904773
  • 财政年份:
    2009
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
  • 批准号:
    0929241
  • 财政年份:
    2008
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
  • 批准号:
    0610067
  • 财政年份:
    2006
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Numerical Methods for Multiple Scale Problems in Wave Propagation: Efficient Approximation of Integral Operators in the Time Domain
波传播中多尺度问题的数值方法:时域积分算子的有效逼近
  • 批准号:
    0306285
  • 财政年份:
    2003
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Scientific Computing Research Environments in the Mathematical Sciences
数学科学中的科学计算研究环境
  • 批准号:
    9977396
  • 财政年份:
    1999
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Computational Analysis of Multiple Scales Problems in Wave Propagation
数学科学:波传播中多尺度问题的计算分析
  • 批准号:
    9600146
  • 财政年份:
    1996
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Scientific Computing Research Developments for the Mathematical Sciences
数学科学的科学计算研究进展
  • 批准号:
    9508285
  • 财政年份:
    1995
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant

相似国自然基金

适用于云微物理特性连续变化的辐射传输新理论研究及其在气候模式模拟中的应用
  • 批准号:
    41675003
  • 批准年份:
    2016
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
超材料中电磁波的非协调有限元数值模拟及加速技术的新研究模式
  • 批准号:
    11571389
  • 批准年份:
    2015
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
结构宏观经济模型的估计与评价——基于新后验模拟方法
  • 批准号:
    71473168
  • 批准年份:
    2014
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
强子对撞机上高精度全局性蒙特卡罗模拟方法的应用及发展
  • 批准号:
    11205008
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
构建和发展先进的新一代可极化分子力场- - 探索和模拟复杂分子体系结构性能的新方法
  • 批准号:
    21133005
  • 批准年份:
    2011
  • 资助金额:
    280.0 万元
  • 项目类别:
    重点项目

相似海外基金

Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
  • 批准号:
    10785755
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
  • 批准号:
    10585764
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
Joint Estimate Diffusion Imaging (JEDI) for improved Tissue Characterization and Neural Connectivity in Aging and Alzheimer's Disease
联合估计扩散成像 (JEDI) 可改善衰老和阿尔茨海默病的组织表征和神经连接
  • 批准号:
    10662911
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
A comparative evaluation of overdose prevention programs in New York City and Rhode Island
纽约市和罗德岛州药物过量预防计划的比较评估
  • 批准号:
    10629749
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
A bioluminescent-based imaging probe for noninvasive longitudinal monitoring of CoQ10 uptake in vivo
基于生物发光的成像探针,用于体内 CoQ10 摄取的无创纵向监测
  • 批准号:
    10829717
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了