Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC

合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用

基本信息

  • 批准号:
    2309780
  • 负责人:
  • 金额:
    $ 16.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Thanks to the development of calculus due to Newton and others, we are able to understand the physical world around us by constructing sentences using the language of calculus; these sentences often take the form of differential equations. These equations are used to formulate the fundamental laws of nature, from Newton’s law in classical mechanics and Maxwell’s equations in electromagnetism to Einstein’s field equations in general relativity and Schrodinger equation in quantum mechanics, and to model the most diverse phenomena (in engineering, chemistry, biology, astronomy, and numerous other fields). Many important applications involve differential equations whose solutions are functions that are defined on manifolds; roughly speaking, a manifold is curved surface. For this reason, the study of function spaces on manifolds is of paramount importance in applied mathematics, and a major part of this project is focused on developing a more complete mathematical understanding of properties of certain function spaces known as Sobolev spaces on manifolds. Additionally, differential equations usually cannot be solved using analytic techniques, and therefore designing and rigorously analyzing various aspects of algorithms for approximating solutions to these equations is of central importance and is a second major part of this project. If our goals are achieved, the results of this project will have a broad impact on areas of mathematics and physics such as the mathematical theory of general relativity, numerical relativity, mathematical and computational membrane mechanics, and other areas of science and engineering. Training of at least one graduate student at UCSD on the topics of the project is expected.This project is concerned with the properties of Sobolev spaces of functions, differential forms, and more generally sections of vector bundles on manifolds, with particular focus on nonsmooth manifolds. Our primary application is to general Petrov-Galerkin numerical methods for partial differential equations (PDE) on hypersurfaces of arbitrary dimension and on more general manifolds, and an important technical tool throughout our work will be the Finite Element Exterior Calculus (FEEC) framework. Such function spaces arise naturally in numerical treatment of PDE in two distinct ways: First, the study of boundary value problems (BVP) involving differential forms on Lipschitz domains in Rn leads to nonsmooth differential forms on the Lipschitz boundary manifold. Second, a careful analysis of PDE on triangulated surfaces, which are obtained by discretization of a smooth surface and replacing it with an approximate manifold, involves Sobolev spaces on Lipschitz manifolds. Although there are results on the properties of Sobolev spaces on nonsmooth (primarily compact) manifolds scattered throughout the literature, a complete and coherent rigorous study of the properties of such spaces is missing. A primary goal of this project is to study the properties of Sobolev spaces needed for theoretical and numerical analysis of PDE on nonsmooth manifolds, and establish results that are currently missing in the literature. It is well-known that in the study of BVP, one quickly encounters fractional-order Sobolev spaces that exhibit surprising behavior even on domains in Rn. One of the challenging features of this project will be to explore the extent to which properties of fractional-order Sobolev spaces on domains in Rn will transfer to Sobolev spaces of differential forms on open manifolds and on Lipschitz manifolds obtained as a result of the triangulation of hypersurfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
感谢您由于牛顿和其他人而发展的微积分,我们能够通过使用微积分来构造句子来理解我们周围的物理世界;这些句子通常采用微分方程的形式。这些方程式用于构成自然的基本定律,从经典力学的牛顿定律和麦克斯韦的电子磁学方程到量子力学中的一般可靠性和施罗德林格方程的爱因斯坦野外方程,以及在工程,化学,化学,生物学,生物学,天文学和许多其他领域中建模最多样化的现象。许多重要的应用涉及微分方程,其解决方案是在流形中定义的函数。粗略地说,歧管是弯曲的表面。因此,对流形的功能空间的研究在应用数学中至关重要,并且该项目的主要部分侧重于对某些功能空间的属性更完整的数学理解,在歧管上被称为sobolev空间。此外,通常无法使用分析技术来解决微分方程,因此设计和严格分析算法的各个方面以将解决方案近似于这些方程是至关重要的,并且是该项目的第二个主要部分。如果实现了我们的目标,那么该项目的结果将对数学和物理学领域产生广泛的影响,例如一般相对论,数值相对论,数学和计算膜力学以及其他科学和工程领域的数学理论。预计将对UCSD的至少一名研究生进行了有关该项目主题的培训。该项目涉及功能,不同形式的Sobolev空间的性质,以及更普遍的矢量捆绑包部分,尤其侧重于非平滑歧管。我们的主要应用是在任意维度和更通用的歧管上进行部分微分方程(PDE)的一般Petrov-Galerkin数值方法(PDE),整个工作中的重要技术工具将是有限的元素外部计算(FEEC)框架。这种功能空间自然出现在PDE的数值处理中,以两种不同的方式进行:首先,边界价值问题的研究(BVP)涉及RN中Lipschitz域上的差异形式,导致Lipschitz边界歧管上的非平滑差分形式。其次,对三角形表面上的PDE进行了仔细的分析,该表面是通过平滑表面离散并用大约歧管替换的,涉及Lipschitz歧管上的Sobolev空间。尽管Sobolev空间在非平滑(主要是紧凑)散布在整个文献中的非平滑歧管上的性能有一些结果,但缺少对此类空间特性的完整而连贯的严格研究。该项目的主要目的是研究对非平滑歧管上PDE的理论和数值分析所需的Sobolev空间的特性,并确定文献中目前缺少的结果。众所周知,在BVP的研究中,一个迅速遇到的分数Sobolev空间,即使在RN中的域上也暴露了惊喜行为。该项目的挑战者特征之一将是探索RN中索波列夫空间的分数sobolev空间的特性,将转移到开放式流形和Lipschitz流形上的sobolev空间,并在lipschitz流形上转移到sobolev spaces,这是通过评估nsf的构建奖的三角策略而获得的。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Holst其他文献

Effects of Membrane Calcium Flux Localizations and Realistic T-Tubule Geometry on Cardiac Excitation-Contraction Coupling
  • DOI:
    10.1016/j.bpj.2009.12.2985
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuhui Cheng;Zeyun Yu;Masahiko Hoshijima;Michael Holst;Andrew McCulloch;Andrew McCammon;Anushka Michailova
  • 通讯作者:
    Anushka Michailova
MULTILEVEL PRECONDITIONERS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF ELLIPTIC PROBLEMS WITH JUMP COEFFICIENTS By
具有跳跃系数的椭圆问题的不连续 Galerkin 逼近的多级预处理器
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. A. Dios;Michael Holst;Yunrong Zhu;L. Zikatanov;B. A. Dios;Michael Holst;Yunrong Zhu
  • 通讯作者:
    Yunrong Zhu
Modeling the Impact of Spine Apparatus on Signaling and Regulation in Realistic Dendritic Spine Geometries
  • DOI:
    10.1016/j.bpj.2018.11.1303
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Justin G. Laughlin;Christopher T. Lee;J. Andrew McCammon;Rommie E. Amaro;Michael Holst;Padmini Rangamani
  • 通讯作者:
    Padmini Rangamani
Correlating Dendritic Spine Geometry and Calcium Transients to Learning and Information Processing
  • DOI:
    10.1016/j.bpj.2019.11.1632
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher T. Lee;Justin G. Laughlin;Miriam Bell;Michael Holst;Padmini Rangamani
  • 通讯作者:
    Padmini Rangamani
Modeling Actin Networks in Realistic Geometries of Dendritic Spines
  • DOI:
    10.1016/j.bpj.2019.11.2451
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Nguyen;Justin L. Oshiro;Christopher T. Lee;Michael Holst;Padmini Rangamani
  • 通讯作者:
    Padmini Rangamani

Michael Holst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Holst', 18)}}的其他基金

Collaborative Proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
协作提案:神经网络数值建模、学习和多级有限元方法研讨会
  • 批准号:
    2132896
  • 财政年份:
    2021
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
  • 批准号:
    2012857
  • 财政年份:
    2020
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Numerical Methods for Geometric PDE on Manifolds with Arbitrary Topology
任意拓扑流形上几何偏微分方程的数值方法
  • 批准号:
    1620366
  • 财政年份:
    2016
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Analysis of the Einstein Constraint Equations
FRG:合作研究:爱因斯坦约束方程的分析
  • 批准号:
    1262982
  • 财政年份:
    2013
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Methods and Finite Element Exterior Calculus for Nonlinear Geometric PDE
合作研究:非线性几何偏微分方程的自适应方法和有限元外微积分
  • 批准号:
    1217175
  • 财政年份:
    2012
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
  • 批准号:
    1065972
  • 财政年份:
    2011
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Parallel Computing and Visualization Facility to Enable Integrated Research and Training in Modern Computational Science, Mathematics, and Engineering
MRI:收购并行计算和可视化设施,以实现现代计算科学、数学和工程的综合研究和培训
  • 批准号:
    0821816
  • 财政年份:
    2008
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
  • 批准号:
    0715146
  • 财政年份:
    2007
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Parallel Computing and Visualization Infrastructure for Scientific Computation
科学计算的并行计算和可视化基础设施
  • 批准号:
    0619173
  • 财政年份:
    2006
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Nonlinear Diffusion Problems
合作研究:非线性扩散问题的数值方法
  • 批准号:
    0411723
  • 财政年份:
    2004
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant

相似国自然基金

智能建造“人机协作”场景下高龄建筑工人胜任力的影响机理与增强方法研究
  • 批准号:
    72301131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
现场工业化建造的理论构建及其与装配式建造的协同路径研究
  • 批准号:
    72371050
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
极端环境中自刚化充气式居住舱的结构性能与建造过程研究
  • 批准号:
    52308265
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
平台模式下“制造-建造”一体化有形建造资源协调机制与调度优化方法研究
  • 批准号:
    72301256
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: CyberTraining of Construction (CyCon) Research Workforce Through an Educational and Community Engagement Platform
协作研究:网络培训:实施:媒介:通过教育和社区参与平台对建筑 (CyCon) 研究人员进行网络培训
  • 批准号:
    2229604
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326159
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
  • 批准号:
    2401745
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: CyberTraining of Construction (CyCon) Research Workforce Through an Educational and Community Engagement Platform
协作研究:网络培训:实施:媒介:通过教育和社区参与平台对建筑 (CyCon) 研究人员进行网络培训
  • 批准号:
    2229603
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了