FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
基本信息
- 批准号:1065972
- 负责人:
- 金额:$ 45.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-15 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to develop practical rigorous methods for estimating the error in computed waveforms from gravitational wave simulation with reliable accuracy, in support of the NSF-funded Laser Interferometer Gravitational Observatory (LIGO). The project brings together a team of applied and computational mathematicians with expertise in constructing error estimates for solutions of partial differential equations and physicists with expertise in numerical solutions of the Einstein equation and gravitational wave data analysis. The primary technical goal is to develop and analyze new mathematical and computational methods that can be used by the gravitational physics community to compute rigorous and reliably accurate estimates for the errors of numerical solutions of the Einstein equations and the gravitational waveforms that are determined from them. In particular, this research explores the following issues:(1) Error quantification and a posteriori analysis using adjoint sensitivity techniques, and their associated numerical implementation;(2) Adaptive algorithms that are driven by goal-oriented error control, and their associated theoretical convergence analysis; and(3) The role of covariance symmetry and associated geometric structures in error analysis and the construction of numerical methods.As part of the a posteriori analysis, the project team will develop the basic theory of adjoint operators and duality for the Einstein equations. This will provide the foundation for future investigations into sensitivity analysis, data assimilation and uncertainty quantification for using LIGO data. It should be emphasized that the main thrusts of the proposed research are discretization-neutral, and therefore have broad applicability to the breadth of numerical relativity codes in existence.The NSF-supported Laser Interferometer Gravitational Observatory (LIGO) can be successful only if highly accurate gravitational waveform models are available for use as part of the data analysis process, both for detecting gravitational waves and also for measuring the physical properties of any detected signals. The strongest sources of gravitational waves are expected to be collisions between heavy, dense stars or black holes, which can only be modeled accurately using complex numerical simulations to calculate the anticipated gravitational waveforms. Such waveforms are needed to construct the filters that allow detection of the weak gravitational-wave signals in the noisy detector, and such waveforms are also needed to measure the physical properties of the sources of any detected signals. The waveform accuracy needed to accomplish the required data analysis tasks is quite high. However, the numerical relativity community has yet to develop the analytic and computational tools needed to evaluate rigorously the accuracy of the numerical waveform models. If the qualitative accuracy measures currently used by the numerical relativity community are too optimistic, the rigorous new methods developed by this project could make the difference between success and failure of LIGO. If the current numerical waveforms are in fact accurate enough, the methods developed by this project could improve the computational efficiency of determining waveforms with a specified accuracy level, and thus reduce the cost of producing them.
该项目的目的是开发实用的严格方法,用于以可靠的精度估算重力波模拟中计算的波形的误差,以支持NSF资助的激光干涉仪重力仪表仪(LIGO)。 该项目汇集了一组应用和计算数学家团队,该团队在构建部分微分方程解决方案的错误估计和物理学家方面具有专业知识,并具有在爱因斯坦方程和重力波数据分析的数值解决方案方面具有专业知识。 主要的技术目标是开发和分析重力物理社区可以使用的新数学和计算方法,以计算对爱因斯坦方程数值溶液的误差以及由它们确定的重力波形的严格且可靠地准确的估计。 特别是,本研究探讨了以下问题:(1)使用伴随灵敏度技术及其相关的数值实施的错误量化和后验分析;(2)由目标误差控制及其相关的理论融合分析驱动的自适应算法; (3)协方差对称性和相关的几何结构在误差分析和数值方法的构建中的作用。作为A后验分析的一部分,项目团队将开发爱因斯坦方程的伴随运算符和二元性的基本理论。这将为未来研究使用LIGO数据的敏感性分析,数据同化和不确定性定量的基础。应该强调的是,拟议的研究的主要目的是离散化的中立,因此在存在的数值相对性代码的范围内具有广泛的适用性。NSF支持的激光干涉仪重力引力观测值(Ligo)仅在高度准确的绘制范围内才能成功地进行绘制,以便在高度准确的范围内使用数据分析,该过程既可以使用数据,又可以分析数据,该分析能够分析,部分,部分。任何检测到的信号的属性。 重力波的最强来源预计是重,致密的恒星或黑洞之间的碰撞,只能使用复杂的数值模拟来准确对其进行建模,以计算预期的引力波形。 需要这样的波形来构建允许检测噪声检测器中弱重力波信号的过滤器,并且还需要进行此类波形来测量任何检测到的信号源的物理特性。 完成所需的数据分析任务所需的波形准确性很高。 但是,数值相对性社区尚未开发出严格评估数值波形模型准确性所需的分析和计算工具。 如果数值相对性社区当前使用的定性准确性措施过于乐观,那么该项目开发的严格新方法可能会使Ligo的成功与失败之间有所不同。 如果当前的数值波形实际上足够准确,则该项目开发的方法可以提高以指定精度水平确定波形的计算效率,从而降低产生它们的成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Holst其他文献
Effects of Membrane Calcium Flux Localizations and Realistic T-Tubule Geometry on Cardiac Excitation-Contraction Coupling
- DOI:
10.1016/j.bpj.2009.12.2985 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Yuhui Cheng;Zeyun Yu;Masahiko Hoshijima;Michael Holst;Andrew McCulloch;Andrew McCammon;Anushka Michailova - 通讯作者:
Anushka Michailova
MULTILEVEL PRECONDITIONERS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF ELLIPTIC PROBLEMS WITH JUMP COEFFICIENTS By
具有跳跃系数的椭圆问题的不连续 Galerkin 逼近的多级预处理器
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
B. A. Dios;Michael Holst;Yunrong Zhu;L. Zikatanov;B. A. Dios;Michael Holst;Yunrong Zhu - 通讯作者:
Yunrong Zhu
Modeling the Impact of Spine Apparatus on Signaling and Regulation in Realistic Dendritic Spine Geometries
- DOI:
10.1016/j.bpj.2018.11.1303 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Justin G. Laughlin;Christopher T. Lee;J. Andrew McCammon;Rommie E. Amaro;Michael Holst;Padmini Rangamani - 通讯作者:
Padmini Rangamani
Correlating Dendritic Spine Geometry and Calcium Transients to Learning and Information Processing
- DOI:
10.1016/j.bpj.2019.11.1632 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Christopher T. Lee;Justin G. Laughlin;Miriam Bell;Michael Holst;Padmini Rangamani - 通讯作者:
Padmini Rangamani
Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries
具有表观视界边界的紧流形上爱因斯坦约束方程的非CMC解
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Michael Holst;Caleb Meier;G. Tsogtgerel - 通讯作者:
G. Tsogtgerel
Michael Holst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Holst', 18)}}的其他基金
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
- 批准号:
2309780 - 财政年份:2023
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
Collaborative Proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
协作提案:神经网络数值建模、学习和多级有限元方法研讨会
- 批准号:
2132896 - 财政年份:2021
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
- 批准号:
2012857 - 财政年份:2020
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
Numerical Methods for Geometric PDE on Manifolds with Arbitrary Topology
任意拓扑流形上几何偏微分方程的数值方法
- 批准号:
1620366 - 财政年份:2016
- 资助金额:
$ 45.49万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Analysis of the Einstein Constraint Equations
FRG:合作研究:爱因斯坦约束方程的分析
- 批准号:
1262982 - 财政年份:2013
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Methods and Finite Element Exterior Calculus for Nonlinear Geometric PDE
合作研究:非线性几何偏微分方程的自适应方法和有限元外微积分
- 批准号:
1217175 - 财政年份:2012
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
MRI: Acquisition of a Parallel Computing and Visualization Facility to Enable Integrated Research and Training in Modern Computational Science, Mathematics, and Engineering
MRI:收购并行计算和可视化设施,以实现现代计算科学、数学和工程的综合研究和培训
- 批准号:
0821816 - 财政年份:2008
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
- 批准号:
0715146 - 财政年份:2007
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
Parallel Computing and Visualization Infrastructure for Scientific Computation
科学计算的并行计算和可视化基础设施
- 批准号:
0619173 - 财政年份:2006
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
Collaborative Research: Numerical Methods for Nonlinear Diffusion Problems
合作研究:非线性扩散问题的数值方法
- 批准号:
0411723 - 财政年份:2004
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
相似国自然基金
临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
- 批准号:72302101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 45.49万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 45.49万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 45.49万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant