FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation

FRG:协作研究:重力波形仿真的误差量化和控制

基本信息

  • 批准号:
    1065972
  • 负责人:
  • 金额:
    $ 45.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-15 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

The purpose of this project is to develop practical rigorous methods for estimating the error in computed waveforms from gravitational wave simulation with reliable accuracy, in support of the NSF-funded Laser Interferometer Gravitational Observatory (LIGO). The project brings together a team of applied and computational mathematicians with expertise in constructing error estimates for solutions of partial differential equations and physicists with expertise in numerical solutions of the Einstein equation and gravitational wave data analysis. The primary technical goal is to develop and analyze new mathematical and computational methods that can be used by the gravitational physics community to compute rigorous and reliably accurate estimates for the errors of numerical solutions of the Einstein equations and the gravitational waveforms that are determined from them. In particular, this research explores the following issues:(1) Error quantification and a posteriori analysis using adjoint sensitivity techniques, and their associated numerical implementation;(2) Adaptive algorithms that are driven by goal-oriented error control, and their associated theoretical convergence analysis; and(3) The role of covariance symmetry and associated geometric structures in error analysis and the construction of numerical methods.As part of the a posteriori analysis, the project team will develop the basic theory of adjoint operators and duality for the Einstein equations. This will provide the foundation for future investigations into sensitivity analysis, data assimilation and uncertainty quantification for using LIGO data. It should be emphasized that the main thrusts of the proposed research are discretization-neutral, and therefore have broad applicability to the breadth of numerical relativity codes in existence.The NSF-supported Laser Interferometer Gravitational Observatory (LIGO) can be successful only if highly accurate gravitational waveform models are available for use as part of the data analysis process, both for detecting gravitational waves and also for measuring the physical properties of any detected signals. The strongest sources of gravitational waves are expected to be collisions between heavy, dense stars or black holes, which can only be modeled accurately using complex numerical simulations to calculate the anticipated gravitational waveforms. Such waveforms are needed to construct the filters that allow detection of the weak gravitational-wave signals in the noisy detector, and such waveforms are also needed to measure the physical properties of the sources of any detected signals. The waveform accuracy needed to accomplish the required data analysis tasks is quite high. However, the numerical relativity community has yet to develop the analytic and computational tools needed to evaluate rigorously the accuracy of the numerical waveform models. If the qualitative accuracy measures currently used by the numerical relativity community are too optimistic, the rigorous new methods developed by this project could make the difference between success and failure of LIGO. If the current numerical waveforms are in fact accurate enough, the methods developed by this project could improve the computational efficiency of determining waveforms with a specified accuracy level, and thus reduce the cost of producing them.
该项目的目的是开发实用的严格方法,以可靠的精度估计引力波模拟计算波形的误差,以支持 NSF 资助的激光干涉仪重力观测站 (LIGO)。 该项目汇集了一支由具有构建偏微分方程解误差估计专业知识的应用和计算数学家和具有爱因斯坦方程数值解和引力波数据分析专业知识的物理学家组成的团队。 主要技术目标是开发和分析新的数学和计算方法,引力物理学界可以使用这些方法对爱因斯坦方程的数值解和由此确定的引力波形的误差进行严格且可靠的准确估计。 具体来说,本研究探讨了以下问题:(1)使用伴随灵敏度技术的误差量化和后验分析及其相关的数值实现;(2)由目标导向误差控制驱动的自适应算法及其相关的理论收敛性分析; (3)协方差对称性和相关几何结构在误差分析和数值方法构建中的作用。作为后验分析的一部分,项目团队将开发爱因斯坦方程的伴随算子和对偶性的基本理论。这将为未来使用 LIGO 数据进行敏感性分析、数据同化和不确定性量化的研究奠定基础。应该强调的是,拟议研究的主旨是离散化中性的,因此对现有的数值相对论代码具有广泛的适用性。 NSF 支持的激光干涉仪重力观测站(LIGO)只有在高精度的情况下才能成功引力波形模型可用作数据分析过程的一部分,既可用于检测引力波,也可用于测量任何检测到的信号的物理特性。 最强的引力波源预计是重而密的恒星或黑洞之间的碰撞,只能使用复杂的数值模拟来精确建模,以计算预期的引力波形。 需要这样的波形来构造滤波器,以允许在有噪声的探测器中检测微弱的引力波信号,并且还需要这样的波形来测量任何检测到的信号源的物理特性。 完成所需的数据分析任务所需的波形精度相当高。 然而,数值相对论界尚未开发出严格评估数值波形模型准确性所需的分析和计算工具。 如果数值相对论界目前使用的定性精度测量过于乐观,那么该项目开发的严格的新方法可能会决定 LIGO 的成功与失败。 如果当前的数值波形实际上足够准确,那么该项目开发的方法可以提高确定具有指定精度水平的波形的计算效率,从而降低生成波形的成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Holst其他文献

MULTILEVEL PRECONDITIONERS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF ELLIPTIC PROBLEMS WITH JUMP COEFFICIENTS By
具有跳跃系数的椭圆问题的不连续 Galerkin 逼近的多级预处理器
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. A. Dios;Michael Holst;Yunrong Zhu;L. Zikatanov;B. A. Dios;Michael Holst;Yunrong Zhu
  • 通讯作者:
    Yunrong Zhu
Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries
具有表观视界边界的紧流形上爱因斯坦约束方程的非CMC解
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Holst;Caleb Meier;G. Tsogtgerel
  • 通讯作者:
    G. Tsogtgerel
NEWEST VERTEX BISECTION OVER GENERAL TRIANGULATIONS
一般三角剖分的最新顶点二分法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Holst;M. Licht;Zhao Lyu
  • 通讯作者:
    Zhao Lyu

Michael Holst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Holst', 18)}}的其他基金

Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
协作提案:神经网络数值建模、学习和多级有限元方法研讨会
  • 批准号:
    2132896
  • 财政年份:
    2021
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
  • 批准号:
    2012857
  • 财政年份:
    2020
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Numerical Methods for Geometric PDE on Manifolds with Arbitrary Topology
任意拓扑流形上几何偏微分方程的数值方法
  • 批准号:
    1620366
  • 财政年份:
    2016
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Analysis of the Einstein Constraint Equations
FRG:合作研究:爱因斯坦约束方程的分析
  • 批准号:
    1262982
  • 财政年份:
    2013
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Methods and Finite Element Exterior Calculus for Nonlinear Geometric PDE
合作研究:非线性几何偏微分方程的自适应方法和有限元外微积分
  • 批准号:
    1217175
  • 财政年份:
    2012
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Parallel Computing and Visualization Facility to Enable Integrated Research and Training in Modern Computational Science, Mathematics, and Engineering
MRI:收购并行计算和可视化设施,以实现现代计算科学、数学和工程的综合研究和培训
  • 批准号:
    0821816
  • 财政年份:
    2008
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
  • 批准号:
    0715146
  • 财政年份:
    2007
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Parallel Computing and Visualization Infrastructure for Scientific Computation
科学计算的并行计算和可视化基础设施
  • 批准号:
    0619173
  • 财政年份:
    2006
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Nonlinear Diffusion Problems
合作研究:非线性扩散问题的数值方法
  • 批准号:
    0411723
  • 财政年份:
    2004
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了