OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
基本信息
- 批准号:1609549
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract title: OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sourcesAbstract (general): Lithium-niobate is a revolutionary material that has played a major role in transforming optical telecommunications. It has enabled electronic data (0s and 1s) to be directly written onto light pulses that travel the globe and essentially form the backbone of the internet. It is also used to change the color of light emitted by lasers, of importance for high-speed computing and sensing, as well as to enable realization of novel quantum sources of light that may enable next-generation ultra-secure optical communications. However, currently the performance of lithium-niobate based optical devices is limited by their bulky size. This project aims to miniaturize these to the nanoscale by patterning lithium-niobate onto a photonic microchip, thereby enhancing their efficiency many-fold. This will enable the design of novel light sources with greatly improved properties compared to current technology and also significantly reduce the optical power requirements. The proposed research program is a natural template for informing students, teachers, and the public of how scientists and engineers explore the unique behavior of materials at the nanoscale, and make use of these properties in the creation of new devices. The team will leverage the "magic" of optics and lasers to engage a wide audience and inform the public of their ongoing research. The program has strong theoretical and experimental components and addresses both fundamental and engineering aspects of light-generation in nanoscale optical devices and systems. Therefore, it represents a unique research and educational opportunity for students at all levels. The devices and systems that will be developed will be of great interest to both the scientific community and commercial industry.Abstract (technical): Lithium-niobate, with its large second-order susceptibility, relatively large refractive index and wide transmission window extending from ultra-violet to mid-infrared, is one of the most important optoelectronic materials, widely used for electro-optic modulation and classical & quantum optical frequency conversion. However, due to difficulties associated with fabrication, most of these components are discrete and cannot be easily integrated onto a photonic microchip. Fortunately, recent advances in lithium-niobate thin-film fabrication techniques, via crystal ion slicing, are promising and enable chip-scale integration of nanophotonic devices. The proposed program builds on these results and seeks to develop an integrated nonlinear nanophotonics platform that combines the unique material properties of periodically-poled lithium-niobate with the superior light confinement and dispersion engineering in wavelength-scale optical waveguides and cavities. The new platform will be developed based on thin x-cut lithium-niobate device layers (~500-nm thick) bonded on top of a SiO2 substrate that provides optical isolation. The team will develop new techniques for surface poling of thin x-cut lithium-niobate films, thus allowing for efficient phase matching. State of the art nanofabrication techniques will be used to realize optical waveguides and cavities directly in the periodically-poled device layer. The devices will operate over a wide wavelength range (visible to mid-infrared) and enable strong photon interactions resulting in 40-fold more efficient nonlinear processes than those found in conventional counterparts. The program is expected to result in a wide variety of integrated devices and systems with applications in quantum frequency conversion, entangled-photon pair generation, supercontinuum generation, and frequency comb generation. The proposed program is transformative since it introduces lithium-niobate into the family of materials suitable for integrated, on-chip photonics. It will result in the development of a wide range of novel & more efficient nonlinear optical devices & systems, and make an impact on disciplines as diverse as quantum information science & technology, remote sensing, astronomy and optoelectronics.
摘要标题:OP 协作研究:将铌酸锂引入纳米级:将革命性材料塑造到光子微芯片上以开发下一代光源摘要(概述):铌酸锂是一种革命性材料,在光通信变革中发挥了重要作用。它使电子数据(0 和 1)能够直接写入到在全球传播的光脉冲上,并基本上构成了互联网的主干。它还用于改变激光器发出的光的颜色,这对于高速计算和传感非常重要,并且能够实现新型量子光源,从而实现下一代超安全光通信。然而,目前基于铌酸锂的光学器件的性能受到其体积庞大的限制。该项目旨在通过将铌酸锂图案化到光子微芯片上,将其小型化至纳米级,从而将其效率提高许多倍。与当前技术相比,这将使新型光源的设计具有极大改进的性能,并且还显着降低光功率要求。拟议的研究计划是一个自然模板,可让学生、教师和公众了解科学家和工程师如何探索纳米尺度材料的独特行为,并利用这些特性来创建新设备。该团队将利用光学和激光的“魔力”吸引广泛的受众并向公众介绍他们正在进行的研究。该计划具有强大的理论和实验部分,解决纳米级光学器件和系统中光产生的基础和工程方面的问题。因此,它为各个级别的学生提供了独特的研究和教育机会。即将开发的器件和系统将引起科学界和商业界的极大兴趣。摘要(技术):铌酸锂具有较大的二阶磁化率、相对较大的折射率和从超-紫光到中红外光,是最重要的光电材料之一,广泛用于电光调制以及经典和量子光学频率转换。然而,由于制造困难,大多数这些组件都是分立的,无法轻松集成到光子微芯片上。幸运的是,通过晶体离子切片的铌酸锂薄膜制造技术的最新进展是有前景的,并且能够实现纳米光子器件的芯片级集成。拟议的计划建立在这些结果的基础上,旨在开发一个集成的非线性纳米光子学平台,该平台将周期性极化铌酸锂的独特材料特性与波长级光波导和腔中卓越的光限制和色散工程相结合。新平台将基于薄的 x 切割铌酸锂器件层(约 500 纳米厚)开发,该器件粘合在提供光学隔离的 SiO2 基板顶部。该团队将开发用于 X 切割铌酸锂薄膜表面极化的新技术,从而实现高效的相位匹配。最先进的纳米加工技术将用于直接在周期性极化器件层中实现光波导和空腔。这些器件将在较宽的波长范围(可见光到中红外)下工作,并实现强光子相互作用,从而使非线性过程的效率比传统同类器件高 40 倍。该项目预计将产生多种集成器件和系统,应用于量子频率转换、纠缠光子对生成、超连续谱生成和频率梳生成。该计划具有变革性,因为它将铌酸锂引入适合集成片上光子学的材料系列中。它将导致一系列新颖、更高效的非线性光学器件和系统的发展,并对量子信息科学与技术、遥感、天文学和光电子学等多个学科产生影响。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrated photonics on thin-film lithium niobate
薄膜铌酸锂上的集成光子学
- DOI:10.1364/aop.411024
- 发表时间:2021-02-23
- 期刊:
- 影响因子:27.1
- 作者:Di Zhu;Linbo Shao;Mengjie Yu;Rebecca Cheng;B. Desiatov;C. Xin;Yaowen Hu;Jeffrey Holzgrafe;S. G
- 通讯作者:S. G
Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides
纳米光子周期性极化铌酸锂波导中的超高效率波长转换
- DOI:10.1364/optica.5.001438
- 发表时间:2018-09-24
- 期刊:
- 影响因子:10.4
- 作者:Cheng Wang;C. Langrock;A. Mar;i;i;M. Jankowski;Mian Zhang;B. Desiatov;M. Fejer;M. Lončar
- 通讯作者:M. Lončar
Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides
铌酸锂波导中相干二倍频程超连续谱产生
- DOI:10.1364/ol.44.001222
- 发表时间:2019-02
- 期刊:
- 影响因子:3.6
- 作者:Yu, Mengjie;Desiatov, Boris;Okawachi, Yoshitomo;Gaeta, Alexander L.;Lončar, Marko
- 通讯作者:Lončar, Marko
Second harmonic generation in nano-structured thin-film lithium niobate waveguides
纳米结构薄膜铌酸锂波导中的二次谐波产生
- DOI:10.1364/oe.25.006963
- 发表时间:2017-03
- 期刊:
- 影响因子:3.8
- 作者:Wang, Cheng;Xiong, Xiao;Andrade, Nicolas;Venkataraman, Vivek;Ren, Xi;Guo, Guang;Lončar, Marko
- 通讯作者:Lončar, Marko
Nanophotonic lithium niobate electro-optic modulators
纳米光子铌酸锂电光调制器
- DOI:10.1364/oe.26.001547
- 发表时间:2018-01
- 期刊:
- 影响因子:3.8
- 作者:Wang, Cheng;Zhang, Mian;Stern, Brian;Lipson, Michal;Lončar, Marko
- 通讯作者:Lončar, Marko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marko Loncar其他文献
Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
- DOI:
10.1109/nano.2002.1032255 - 发表时间:
2002-11-07 - 期刊:
- 影响因子:0
- 作者:
Jelena Vučković;T. Yoshie;Marko Loncar;H. Mabuchi;Axel Scherer - 通讯作者:
Axel Scherer
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
- DOI:
10.1109/qels.2002.1031116 - 发表时间:
2002-05-19 - 期刊:
- 影响因子:0
- 作者:
T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe - 通讯作者:
D. Deppe
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
- DOI:
10.1063/1.4867254 - 发表时间:
2014 - 期刊:
- 影响因子:4
- 作者:
Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan - 通讯作者:
Qimin Quan
Marko Loncar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marko Loncar', 18)}}的其他基金
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
- 批准号:
2320265 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
- 批准号:
2137723 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
- 批准号:
1825257 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
- 批准号:
1946564 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
- 批准号:
1827720 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
- 批准号:
1810233 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
- 批准号:
1839197 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
- 批准号:
1740296 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
- 批准号:
1507508 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
- 批准号:
1428694 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114304 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127331 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114312 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
- 批准号:
1938702 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant