GOALI: Stable Nanomechanical Oscillators with Large f*Q Product

GOALI:具有大 f*Q 产品的稳定纳米机械振荡器

基本信息

  • 批准号:
    1507508
  • 负责人:
  • 金额:
    $ 41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

'1. Proposal Title: GOALI: Stable Nanomechanical Oscillators with Large f*Q Product2. Brief description of project Goals: Nanoscale electro-opto-mechanical systems will be fabricated in diamond, and their applications in precision measurements (e.g. mass, force) will be explored. 3. Abstract: a) Nontechnical Abstract:Diamond is a fascinating material with many remarkable properties. In fact, in many ways it is the ultimate engineering material - the engineer's best friend! For example, diamond has high mechanical hardness and is one of the best thermal conductors. It is optically transparent from the ultra-violet to far infra-red and has a high refractive index (n = 2.4). Finally, it is biocompatible and chemically inert. These properties make diamond a highly desirable material for many applications, including those in life sciences, oil discovery, and industrial sensing. Many of these applications require realization of high-frequency (f), high quality factor (Q), stable, nanoscale electro-mechanical and opto-mechanical systems (NEMS and NOMS). These systems could lead to realization of stable oscillators and sensitive mass measurements, and could operate in both harsh environments (due to diamond's chemical inertness) and in bio-medical setting (due to diamond's bio-compatibility). Despite its unique properties, however, single-crystal diamond has not found many applications in NEMS and NOMS yet! Why? All NEMS/ NOMS platforms have an important feature in common: they consist of a device layer typically a thin film supported by a substrate of a different material that can be sacrificially removed. Single-crystal diamond is one example from an extensive list of materials many with attractive material properties for which such thin film platform does not exist. To overcome this obstacle, the team will leverage angled-etching fabrication technique (pioneered by Loncar group) that allows for realization of functional devices in bulk diamond substrates, and state of the art materials and material expertise provided by industrial partner (Element 6).b) Technical Abstract:The goal of the proposed experimental program is to investigate the potential of single crystal diamond as a NEMS/ NOMS material. The program will address many fundamental questions that pertain to crystalline NEMS, including material synthesis, nanofabrication, performance limits, and so on. In particular, potential for realization of high f*Q product mechanical oscillators in diamond and their applications in precision measurements (mass, force) and as a stable timing reference will be explored. This will be accomplished using angled-etching technique to realize cantilevers, contour resonators, acoustic-wave whispering gallery mode resonators, and optomechanical crystals (photonic-phononic lattices) in single crystal diamond substrates. Angled-etching technique, recently demonstrated by Harvard team, is based on a combination of top-down etching, where ions in the RIE chamber impinge vertically on the diamond surface, with subsequent angled etching, where ions are directed at an angle on the etched features. In the later etch step, the sample is inserted in a Faraday cage, whose geometry defines the angle of incidence of ions on the etched substrate. Collaboration between academic research lab and industrial partner is mutually beneficial: industrial partner (Element Six) will provide state-of-the-art diamond substrates, bulk diamond processing (including polishing and annealing), and when appropriate support commercial development; on the other hand, Harvard team will provide insight into cutting edge NEMS and NOMS research, and develop novel nanofabrication and characterization techniques of interest to industry. The program has strong theoretical and experimental component, addresses both fundamental and engineering aspects of nanoscale mechanics and optics, and represents a unique research and educational opportunity for undergraduate, graduate and post-graduate students. Collaboration with industrial partner will enable internship opportunities for students. The team will continue giving public lectures at local schools and Museum of Science (Boston), and mentoring high school students interested in science and technology.
'1.提案标题:GOALI:具有大 f*Q 产品的稳定纳米机械振荡器2。项目目标简介:将用金刚石制造纳米级光电机械系统,并探索其在精密测量(例如质量、力)中的应用。 3. 摘要:a) 非技术摘要:金刚石是一种令人着迷的材料,具有许多显着的特性。事实上,从很多方面来说,它都是终极工程材料 - 工程师最好的朋友!例如,金刚石具有很高的机械硬度,是最好的导热体之一。它对紫外线到远红外线具有光学透明性,并且具有高折射率(n = 2.4)。最后,它具有生物相容性和化学惰性。这些特性使金刚石成为许多应用领域非常理想的材料,包括生命科学、石油发现和工业传感领域。其中许多应用需要实现高频 (f)、高品质因数 (Q)、稳定的纳米级机电和光机械系统(NEMS 和 NOMS)。这些系统可以实现稳定的振荡器和灵敏的质量测量,并且可以在恶劣的环境(由于金刚石的化学惰性)和生物医学环境(由于金刚石的生物相容性)下运行。然而,尽管单晶金刚石具有独特的性能,但它在 NEMS 和 NOMS 中尚未得到广泛应用!为什么?所有 NEMS/NOMS 平台都有一个重要的共同特征:它们由器件层组成,通常是由不同材料的基板支撑的薄膜,可以牺牲去除。单晶金刚石是众多材料中的一个例子,其中许多材料具有有吸引力的材料特性,但这种薄膜平台并不存在。为了克服这一障碍,该团队将利用倾斜蚀刻制造技术(由 Loncar 集团首创),该技术允许在块状金刚石基板中实现功能器件,以及工业合作伙伴 (Element 6) 提供的最先进的材料和材料专业知识。 b) 技术摘要:所提出的实验计划的目标是研究单晶金刚石作为 NEMS/NOMS 材料的潜力。该计划将解决与晶体 NEMS 相关的许多基本问题,包括材料合成、纳米加工、性能限制等。特别是,将探讨在金刚石中实现高 f*Q 乘积机械振荡器的潜力及其在精密测量(质量、力)和作为稳定定时参考中的应用。这将通过使用成角度蚀刻技术来实现,以在单晶金刚石基板上实现悬臂梁、轮廓谐振器、声波回音壁模式谐振器和光机械晶体(光子-声子晶格)。哈佛团队最近演示的成角度蚀刻技术基于自上而下蚀刻的组合,其中 RIE 室中的离子垂直撞击金刚石表面,随后进行成角度蚀刻,其中离子以一定角度定向在蚀刻的表面上。特征。在后面的蚀刻步骤中,将样品插入法拉第笼中,其几何形状定义了离子在蚀刻基板上的入射角。学术研究实验室与工业合作伙伴之间的合作是互惠互利的:工业合作伙伴(元素六)将提供最先进的金刚石基材、散装金刚石加工(包括抛光和退火),并在适当的时候支持商业开发;另一方面,哈佛团队将提供对尖端 NEMS 和 NOMS 研究的见解,并开发业界感兴趣的新型纳米制造和表征技术。该项目具有强大的理论和实验部分,解决纳米级力学和光学的基础和工程方面的问题,并为本科生、研究生和研究生提供了独特的研究和教育机会。与工业合作伙伴的合作将为学生提供实习机会。该团队将继续在当地学校和科学博物馆(波士顿)进行公开讲座,并指导对科学技术感兴趣的高中生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marko Loncar其他文献

Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
  • DOI:
    10.1109/qels.2002.1031116
  • 发表时间:
    2002-05-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe
  • 通讯作者:
    D. Deppe
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
  • DOI:
    10.1063/1.4867254
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan
  • 通讯作者:
    Qimin Quan

Marko Loncar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marko Loncar', 18)}}的其他基金

Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
  • 批准号:
    2137723
  • 财政年份:
    2021
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
  • 批准号:
    1825257
  • 财政年份:
    2019
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
  • 批准号:
    1946564
  • 财政年份:
    2019
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
  • 批准号:
    1827720
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
  • 批准号:
    1810233
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
  • 批准号:
    1839197
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
  • 批准号:
    1740296
  • 财政年份:
    2017
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
  • 批准号:
    1609549
  • 财政年份:
    2016
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
  • 批准号:
    1428694
  • 财政年份:
    2014
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant

相似国自然基金

南极冰层边缘不稳定性的长时序跨周期分析关键技术研究
  • 批准号:
    42301149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于小增益理论的物联网聚合计算鲁棒稳定性分析
  • 批准号:
    62303112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黑土区玉米/豆科连续间作增加土壤团聚体稳定性的机制
  • 批准号:
    32371627
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向网络化控制系统的多源诱发时滞相关稳定分析与鲁棒控制
  • 批准号:
    62373337
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非小细胞肺癌通过摄取乙酸促进c-Myc蛋白稳定性增加的机制研究
  • 批准号:
    82303100
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319098
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303524
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303526
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2427220
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了