Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics

设备: MRI:轨道

基本信息

  • 批准号:
    2320265
  • 负责人:
  • 金额:
    $ 99.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Photons, particles of light, can travel across long distances with very high efficiency, especially when propagating in very low loss fiber-optical cables. Therefore, photons are used as information carriers of choice for optical communication technology that forms the backbone of the internet. Integrated photonic chips - integrated photonics for short - consisting of many micron-scale optical devices, have emerged as an essential technology required to encode information in a photon’s color, polarization, shape, and position. Beyond optical communications, integrated photonics has enabled a wide range of applications with significant societal impact, including environmental monitoring, bio-medical imaging, machine vision, and high-performance computing. These applications crucially rely on the ability to efficiently interface “micro-world” of integrated photonic chips with “macro-world” of optical fibers. In the laboratory setting, this is achieved using bulky, expensive, and high-precision positioners, which renders the system challenging to use in real-world applications. Photonic wire bonding (PWB), the process of permanently attaching an optical fiber to a photonic chip, is ideally suited to overcome this limitation and improve the performance and usability of the integrated photonics. Furthermore, it can also make these systems accessible to many under-resourced communities (e.g. small colleges, high schools) who may not have access to state of the art laboratory equipment. This Major Research Instrumentation (MRI) award is supporting the acquisition of a PWB system by Vanguard Automation. The tool will be placed in a shared clean room facility - Center for Nanoscale Systems at Harvard, member of NNCI network - where it will be available to many academic and industrial users. Therefore, the tool will enable many scientific breakthroughs, stimulate technological advancements and entrepreneurship, and help train a diverse and photonic-savvy workforce. Modern chip-scale photonic systems consist of many optical devices, including waveguides, resonators, modulators, switches, lasers and detectors, realized in a variety of photonic materials and has enabled applications ranging from optical communications and computation on one end, to sensing and precision measurement on the other. The outstanding challenge for integrated photonics is that of efficiently getting light on- and off-chip. Due to the large optical mode mismatch between sub-micron scale on-chip optical waveguides and commercially available optical fibers, featuring optical mode diameters exceeding ten microns, much of the light is lost when light passes from the waveguide to the fiber. This is particularly true for applications that require low temperature operation (e.g. inside cryostat or dilution refrigerator), operation in fluids (e.g. in sensors), scalability (e.g. 10s or 100s devices to be connected at the same time), or robustness to vibrations. Recently, photonic wire bonding, an optical equivalent to electrical wire bonding ubiquitous in electrical circuits, has emerged as a promising technique to create efficient and permanent connections between photonic devices on different platforms, or with fibers or lasers. In this approach, 3-D polymer waveguides are fabricated in situ to bridge the gap between photonic circuits located on different chips, or between the chip and fiber or laser. This technique not only enables scalable, highly efficient, and low loss interface between optical chips and optical fibers, but also allows for the realization of compact hybrid devices that combine different materials. The PWB tool will facilitate successful completion of a large number of ongoing research programs focused on development of new types of chip-scale lasers (including pulsed ones), frequency combs and single-photon sources, for example, and their application in microwave photonics, optical communication and computing, precision measurements of time and distance, environmental monitoring, quantum communication and computation. The tool will also enable new opportunities by the ability to perform long term, stable measurements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光子(光粒子)可以以非常高的效率长距离传播,特别是在损耗极低的光纤电缆中传播时,因此,光子被用作构成互联网骨干的光通信技术的首选信息载体。集成光子芯片(简称集成光子学)由许多微米级光学器件组成,已成为以光子的颜色、偏振、形状和位置编码信息所需的基本技术,除了光通信之外,集成光子学已经成为可能。具有重大社会影响的广泛应用,包括环境监测、生物医学成像、机器视觉和高性能计算,这些应用关键依赖于集成光子芯片的“微观世界”与“宏观世界”的有效连接能力。在实验室环境中,这是通过使用笨重、昂贵且高精度的定位器来实现的,这使得该系统在实际应用中使用光子引线键合(PWB)这一永久过程具有挑战性。将光纤连接到光子芯片非常适合克服这一限制并提高集成光子学的性能和可用性。此外,它还可以使许多可能无法访问的资源贫乏社区(例如小型大学、高中)使用这些系统。该重大研究仪器 (MRI) 奖项用于支持 Vanguard Automation 购买 PWB 系统,该工具将放置在共享洁净室设施中 - 哈佛大学纳米级系统中心(NNCI 网络成员)。 - 它将可供许多学术和工业用户使用,因此,该工具将实现许多科学突破,刺激技术进步和创业精神,并帮助培训由许多光学组成的多样化且精通光子的劳动力。器件,包括波导、谐振器、调制器、开关、激光器和探测器,在各种光子材料中实现,并实现了从光通信和计算到另一端的传感和精密测量的应用,这是集成的突出挑战。光子学由于亚微米级片上光波导和市售光纤之间存在较大的光学模式不匹配(光学模式直径超过十微米),因此会损失大量光。当光从波导传递到光纤时,这对于需要低温操作(例如在低温恒温器或稀释冰箱内)、在流体中操作(例如在传感器中)、可扩展性(例如在传感器中)的应用尤其如此。 10 或 100 个设备同时连接),或抗振动鲁棒性。最近,光子引线键合(一种与电路中普遍存在的电引线键合光学等效的技术)已成为一种在光子之间创建高效且永久连接的有前途的技术。在这种方法中,原位制造 3D 聚合物波导,以桥接位于不同芯片上的光子电路之间或芯片与光纤之间的间隙。该技术不仅可以实现光学芯片和光纤之间的可扩展、高效和低损耗的接口,而且还可以实现结合不同材料的紧凑型混合器件,这将有助于成功完成大量的工作。正在进行的研究项目重点关注新型芯片级激光器(包括脉冲激光器)、频率梳和单光子源的开发,以及它们在微波光子学、光通信和计算、时间和距离的精确测量中的应用、环境监测、量子通信和该工具还将通过执行长期稳定测量的能力带来新的机会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marko Loncar其他文献

Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
  • DOI:
    10.1109/qels.2002.1031116
  • 发表时间:
    2002-05-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe
  • 通讯作者:
    D. Deppe
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
  • DOI:
    10.1063/1.4867254
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan
  • 通讯作者:
    Qimin Quan

Marko Loncar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marko Loncar', 18)}}的其他基金

QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
  • 批准号:
    2137723
  • 财政年份:
    2021
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
  • 批准号:
    1825257
  • 财政年份:
    2019
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
  • 批准号:
    1946564
  • 财政年份:
    2019
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
  • 批准号:
    1827720
  • 财政年份:
    2018
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
  • 批准号:
    1810233
  • 财政年份:
    2018
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
  • 批准号:
    1839197
  • 财政年份:
    2018
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
  • 批准号:
    1740296
  • 财政年份:
    2017
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
  • 批准号:
    1609549
  • 财政年份:
    2016
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
  • 批准号:
    1507508
  • 财政年份:
    2015
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
  • 批准号:
    1428694
  • 财政年份:
    2014
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant

相似国自然基金

基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
  • 批准号:
    82360337
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于多模态MRI探讨突显网络受损介导自发性癌性爆发痛的机制及TMS干预研究
  • 批准号:
    82371937
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
MRI场强依赖性时域噪声电磁机理与抑制方法研究
  • 批准号:
    52307256
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多模态MRI和DenseNet深度学习构建TAO激素抵抗预测模型的研究
  • 批准号:
    82301263
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于糖酵解代谢重编程机制的糖尿病肾病MRI预后评估研究
  • 批准号:
    82371942
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
  • 批准号:
    2319708
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
Equipment: MRI: Track 2 Acquisition of a Tundra Cryo-electron microscope
设备: MRI:Track 2 采购 Tundra 冷冻电子显微镜
  • 批准号:
    2319804
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a Laser System for High Precision Spectroscopy and Trapping Neutral Holmium
设备: MRI:轨道 1 获取用于高精度光谱和捕获中性钬的激光系统
  • 批准号:
    2319917
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a Confocal Microscope for Research and Teaching at Vassar College
设备: MRI:第 1 轨采购一台共焦显微镜,用于瓦萨学院的研究和教学
  • 批准号:
    2320195
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track II Development of an Optical Spectrometer for Multimodal Linearly Polarized, Circularly Polarized, and Integrating-Sphere-Assisted Spectroscopic Measurements
设备: MRI:用于多模态线偏振、圆偏振和积分球辅助光谱测量的光谱仪的 Track II 开发
  • 批准号:
    2320462
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了