QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform

QuIC-TAQS:集成铌酸锂量子光子平台

基本信息

  • 批准号:
    2137723
  • 负责人:
  • 金额:
    $ 250万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Quantum technology, which derives its advantage from the non-intuitive laws of quantum physics, promises to drastically alter the course of computer, network, and sensor development. The realization of this technology relies on the transmission of the smallest units of energy, often across large distances. This is challenging because each unit can be easily misidentified or lost to the environment. Fortunately, particles of light – photons - can circumvent this, and therefore are promising carriers of quantum information even in ambient conditions. However, it is an outstanding challenge to efficiently interface photons with emerging quantum technologies, such as quantum processors and sensors. Thus, realizing so-called quantum interconnects, quantum analog of optical networks that form the backbone of internet, is essential to enable scalability and usability of all quantum technologies. The team is combining expertise in microscale fabrication, non-linear optics, electronics, superconductivity, and material science, to realize transmitter and receiver elements of quantum interconnects for light, all integrated on a photonic chip. This interdisciplinary program provides a unique training ground for students and creates a pipeline for the quantum-ready workforce. The team is actively exploring opportunities for commercialization, leveraging partnerships with industry. Beyond the quantum realm, the team’s work is poised to advance the state of the art in classical communication technology.Optical photons have many attractive properties to realize quantum interconnects, the crucial interfaces between quantum technologies. Photons exist under ambient conditions, can travel long distances, are generally impervious to environmental noise, and can be generated, manipulated, and detected easily. These properties also introduce challenges to realizing quantum technologies that require deterministic interactions between photons, as well as efficient interactions between photons and matter qubits. Both are essential for transmitting quantum information over lossy or long-distance channel, by way of quantum repeaters. Overcoming limitations of existing photonic platforms, the team will develop a scalable, ultra-low-loss, integrated quantum photonic platform based on high-quality thin-film lithium niobate films, and utilize it to realize quantum transmitters and receivers. The approach uses frequency multiplexing and feed-forward to generate and distribute entanglement, leveraging fast single-photon detectors and switches, solid-state quantum memories, and photon pair sources, all integrated on the same chip. Importantly, our team is developing material growth techniques to realize high-quality and ultra-low-loss stoichiometric single-crystal lithium niobate device layers that outperform commercially available material. As an aspirational and stretch goal of the program, the PI and his collaborators are utilizing these components to demonstrate a frequency multiplexed photonic quantum repeater.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术的优势源自量子物理的非直观定律,有望极大地改变计算机、网络和传感器的发展进程。该技术的实现依赖于最小能量单位的传输,通常是跨能量传输。这是具有挑战性的,因为每个单元很容易被错误识别或丢失到环境中,幸运的是,光粒子(光子)可以规避这一点,因此即使在环境条件下,它也是一种出色的量子信息载体。高效界面光子的挑战因此,实现所谓的量子互连(构成互联网骨干的光网络的量子模拟)对于实现所有量子技术的可扩展性和可用性至关重要。在微尺度制造、非线性光学、电子学、超导性和材料科学领域,实现光量子互连的发射器和接收器元件,全部集成在光子芯片上。这个跨学科项目为学生提供了独特的训练场地,并创建了一条管道。为了该团队正在积极探索商业化机会,利用与业界的合作伙伴关系,该团队的工作有望推动经典通信技术的发展。光学光子有许多吸引人的特性需要实现。量子互连是量子技术之间的关键接口。光子存在于环境条件下,可以长距离传播,通常不受环境噪声的影响,并且可以轻松生成、操纵和检测,这些特性也给实现所需的量子技术带来了挑战。确定性相互作用光子之间的相互作用,以及光子与物质量子位之间的相互作用,对于通过量子中继器在有损或长距离通道上传输量子信息至关重要,该团队将开发一种可扩展的超量子平台。 -基于高质量铌酸锂薄膜的低损耗集成量子光子平台,并利用其实现量子发射器和接收器。该方法使用频率复用和前馈来生成和分配。重要的是,我们的团队正在开发材料生长技术,以实现高质量和超低损耗的化学计量。性能优于商用材料的单晶铌酸锂器件层作为该计划的一个理想和延伸目标,PI 和他的合作者正在利用这些组件来演示频率复用光子量子。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Atomic Frequency Comb Memory in Rare-Earth-Doped Thin-Film Lithium Niobate
稀土掺杂薄膜铌酸锂原子频率梳存储器
  • DOI:
    10.1021/acsphotonics.2c01835
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Dutta, Subhojit;Zhao, Yuqi;Saha, Uday;Farfurnik, Demitry;Goldschmidt, Elizabeth A.;Waks, Edo
  • 通讯作者:
    Waks, Edo
Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies
开发下一代信息技术的量子互连 (QuIC)
  • DOI:
    10.1103/prxquantum.2.017002
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Awschalom, David;Berggren, Karl K.;Bernien, Hannes;Bhave, Sunil;Carr, Lincoln D.;Davids, Paul;Economou, Sophia E.;Englund, Dirk;Faraon, Andrei;Fejer, Martin;et al
  • 通讯作者:
    et al
Mirror-induced reflection in the frequency domain
频域中镜面引起的反射
  • DOI:
    10.1038/s41467-022-33529-w
  • 发表时间:
    2022-10-22
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Yaowen Hu;Mengjie Yu;N. Sinclair;Di Zhu;Rebecca Cheng;Cheng Wang;M. Lončar
  • 通讯作者:
    M. Lončar
Spectrally separable photon-pair generation in dispersion engineered thin-film lithium niobate
色散工程薄膜铌酸锂中的光谱可分离光子对生成
  • DOI:
    10.1364/ol.456873
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Xin, C. J.;Mishra, Jatadhari;Chen, Changchen;Zhu, Di;Shams;Langrock, Carsten;Sinclair, Neil;Wong, Franco N. C.;Fejer, M. M.;Lončar, Marko
  • 通讯作者:
    Lončar, Marko
Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators
近红外电光调制器可见低于 1 伏和高带宽
  • DOI:
    10.1038/s41467-023-36870-w
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Renaud, Dylan;Assumpcao, Daniel Rimoli;Joe, Graham;Shams-Ansari, Amirhassan;Zhu, Di;Hu, Yaowen;Sinclair, Neil;Loncar, Marko
  • 通讯作者:
    Loncar, Marko
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marko Loncar其他文献

Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
  • DOI:
    10.1109/qels.2002.1031116
  • 发表时间:
    2002-05-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe
  • 通讯作者:
    D. Deppe
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
  • DOI:
    10.1063/1.4867254
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan
  • 通讯作者:
    Qimin Quan

Marko Loncar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marko Loncar', 18)}}的其他基金

Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
  • 批准号:
    1825257
  • 财政年份:
    2019
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
  • 批准号:
    1946564
  • 财政年份:
    2019
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
  • 批准号:
    1827720
  • 财政年份:
    2018
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
  • 批准号:
    1810233
  • 财政年份:
    2018
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
  • 批准号:
    1839197
  • 财政年份:
    2018
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
  • 批准号:
    1740296
  • 财政年份:
    2017
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
  • 批准号:
    1609549
  • 财政年份:
    2016
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
  • 批准号:
    1507508
  • 财政年份:
    2015
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
  • 批准号:
    1428694
  • 财政年份:
    2014
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Integrated Squeezed-Light Magneto-Optical Sensor
QuSeC-TAQS:集成挤压光磁光传感器
  • 批准号:
    2326754
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Integrated Squeezed-Light Magneto-Optical Sensor
QuSeC-TAQS:集成挤压光磁光传感器
  • 批准号:
    2326754
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
QuIC-TAQS: Multifunctional integrated quantum photonic processor for quantum interconnect
QuIC-TAQS:用于量子互连的多功能集成量子光子处理器
  • 批准号:
    2138174
  • 财政年份:
    2021
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
RAISE: TAQS: On-Chip Entanglement, Preparation, Manipulation, and Detection for Integrated All Quantum Information Processing
RAISE:TAQS:用于集成全量子信息处理的片上纠缠、准备、操纵和检测
  • 批准号:
    1838435
  • 财政年份:
    2018
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
RAISE TAQS: Very Large Scale Integrated Electronics and Phontonics Platform for Scaleable Quantum Information Processing
RAISE TAQS:用于可扩展量子信息处理的超大规模集成电子和光子学平台
  • 批准号:
    1839159
  • 财政年份:
    2018
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了