MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
基本信息
- 批准号:1428694
- 负责人:
- 金额:$ 44.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical: The purpose of this activity is the acquisition of a Nanoscribe 3D laser lithography system (Photonic Professional GT) and its installation in the Center for Nanoscale Systems (CNS) at Harvard University. As the biggest shared facility center of nanotechnology in New England area, CNS is currently supporting more than 1,400 users (both academic and industrial) with research interests ranging from bio-engineering and micro-fluidics to quantum optics and fuel cells. Our diverse research population, working with wide range of materials and structures, has a need for fabrication of three-dimensional structures. Conventional nanofabrication techniques currently available in CNS, however, are planar in nature and are limited to realization of two-dimensional structures only. Nanoscribe 3D overcomes this limitation, and allows for fabrication of complex, hierarchical, structures spanning wide range of length scales, that cannot be realized using conventional nanofabrication techniques. With its appeal to area as diverse as nanoscale optics and electronics, bio-mimetic, microfluidics and tissue engineering, Nanoscribe 3D promotes interdisciplinary collaborations between physicists, chemists, biologists, material scientists and engineers, and enables excellent educational opportunities for a diverse population of students at all levels (undergraduate, graduate and post-graduate).Technical: Current methods for fabrication of 3D structures are based on a sequence of layer-by-layer fabrication using standard planar techniques. This approach is costly, time-consuming, suffers from stringent alignment requirements between successive photolithography steps, and cannot produce arbitrary 3D geometries. Nanoscribe 3D takes advantage of multi-photon absorption processes that occur in the focal spot of tightly focused femto-second laser beam and can realize true 3D structures with ~100nm lateral and ~200nm vertical resolution. For optics research, the tool is used to realize hybrid meso-scale structures that combine bottom-up synthesized nano-materials (nanowires, quantum dots, etc) with top-down defined photonic components, including gratings, cavities, photonic crystals and meta-materials. Of interest to biomimetics research, ability to replicate complex biological structures is crucial, and enables deeper understanding of the functional morphology of these structures, including structural colors. Cell and tissue engineering research benefits from the tool?s ability to realize cm-sized scaffolds with micron-scale detail, as well as other structures. Finally, Nanoscribe 3D allows for efficient fabrication of 3D nanoelectronic arrays that can be used to measure extracellular and intracellular biological signals (e.g. from cardiac and neural cells and tissues).
非技术性:本次活动的目的是购买 Nanoscribe 3D 激光光刻系统 (Photonic Professional GT) 并将其安装在哈佛大学纳米级系统中心 (CNS)。作为新英格兰地区最大的纳米技术共享设施中心,CNS 目前为 1,400 多个用户(学术和工业)提供支持,研究兴趣涵盖生物工程和微流体到量子光学和燃料电池。我们多元化的研究人员使用各种材料和结构,需要制造三维结构。然而,目前中枢神经系统中可用的传统纳米制造技术本质上是平面的,并且仅限于二维结构的实现。 Nanoscribe 3D 克服了这一限制,并允许制造跨越各种长度尺度的复杂、分层结构,这是使用传统纳米制造技术无法实现的。 Nanoscribe 3D 吸引了纳米级光学和电子学、仿生学、微流体学和组织工程等多个领域,促进了物理学家、化学家、生物学家、材料科学家和工程师之间的跨学科合作,并为不同群体的学生提供了良好的教育机会各个级别(本科生、研究生和研究生)。技术:当前的 3D 结构制造方法基于使用标准平面技术的逐层制造序列。这种方法成本高昂、耗时,在连续光刻步骤之间存在严格的对准要求,并且无法生成任意 3D 几何形状。 Nanoscribe 3D 利用紧密聚焦的飞秒激光束焦点中发生的多光子吸收过程,可以实现横向分辨率约为 100 nm、垂直分辨率约为 200 nm 的真正 3D 结构。对于光学研究,该工具用于实现混合介观尺度结构,将自下而上合成的纳米材料(纳米线、量子点等)与自上而下定义的光子组件(包括光栅、腔、光子晶体和元)相结合。材料。对于仿生学研究来说,复制复杂生物结构的能力至关重要,并且可以更深入地了解这些结构的功能形态,包括结构颜色。细胞和组织工程研究受益于该工具能够实现具有微米级细节的厘米大小的支架以及其他结构。最后,Nanoscribe 3D 可以高效制造 3D 纳米电子阵列,可用于测量细胞外和细胞内生物信号(例如来自心脏和神经细胞和组织的信号)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marko Loncar其他文献
Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
- DOI:
10.1109/nano.2002.1032255 - 发表时间:
2002-11-07 - 期刊:
- 影响因子:0
- 作者:
Jelena Vučković;T. Yoshie;Marko Loncar;H. Mabuchi;Axel Scherer - 通讯作者:
Axel Scherer
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
- DOI:
10.1109/qels.2002.1031116 - 发表时间:
2002-05-19 - 期刊:
- 影响因子:0
- 作者:
T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe - 通讯作者:
D. Deppe
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
- DOI:
10.1063/1.4867254 - 发表时间:
2014 - 期刊:
- 影响因子:4
- 作者:
Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan - 通讯作者:
Qimin Quan
Marko Loncar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marko Loncar', 18)}}的其他基金
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
- 批准号:
2320265 - 财政年份:2023
- 资助金额:
$ 44.17万 - 项目类别:
Standard Grant
QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
- 批准号:
2137723 - 财政年份:2021
- 资助金额:
$ 44.17万 - 项目类别:
Continuing Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
- 批准号:
1825257 - 财政年份:2019
- 资助金额:
$ 44.17万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
- 批准号:
1946564 - 财政年份:2019
- 资助金额:
$ 44.17万 - 项目类别:
Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
- 批准号:
1827720 - 财政年份:2018
- 资助金额:
$ 44.17万 - 项目类别:
Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
- 批准号:
1810233 - 财政年份:2018
- 资助金额:
$ 44.17万 - 项目类别:
Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
- 批准号:
1839197 - 财政年份:2018
- 资助金额:
$ 44.17万 - 项目类别:
Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
- 批准号:
1740296 - 财政年份:2017
- 资助金额:
$ 44.17万 - 项目类别:
Continuing Grant
OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
- 批准号:
1609549 - 财政年份:2016
- 资助金额:
$ 44.17万 - 项目类别:
Standard Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
- 批准号:
1507508 - 财政年份:2015
- 资助金额:
$ 44.17万 - 项目类别:
Standard Grant
相似国自然基金
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
- 批准号:82300777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SIRT3-SOD2-mtROS信号轴调控骨骼肌自噬在脓毒症相关获得性肌无力中的作用及机制研究
- 批准号:82360382
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
靶向DCLK1抑制Gas6/Axl通路激活CD8+T细胞治疗肺腺癌奥希替尼获得性耐药
- 批准号:82303649
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于GPX4/Arg-1/TGF-β1轴探索三七总皂苷调控M2巨噬细胞铁死亡抑制获得性异位骨化的机制及量效关系研究
- 批准号:82305273
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KRAS(G12D)抑制剂在胰腺癌中获得性耐药的机制研究
- 批准号:82373331
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Labor Status Monitor for diagnosing True versus False Labor in preterm patients
用于诊断早产患者真假临产的临产状态监测仪
- 批准号:
10484554 - 财政年份:2022
- 资助金额:
$ 44.17万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10676879 - 财政年份:2020
- 资助金额:
$ 44.17万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10676879 - 财政年份:2020
- 资助金额:
$ 44.17万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10058787 - 财政年份:2020
- 资助金额:
$ 44.17万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10212395 - 财政年份:2020
- 资助金额:
$ 44.17万 - 项目类别: