Molecular Mechanisms Connecting Plant Defense Suppression with Magnaporthe oryzae Growth in Rice Cells
水稻细胞中植物防御抑制与稻瘟病菌生长的分子机制
基本信息
- 批准号:1557943
- 负责人:
- 金额:$ 57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-15 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Blast, caused by the fungus Magnaporthe oryzae, is the most serious disease of cultivated rice and a global food security threat that annually results in a 10-30% reduction in worldwide rice yields. M. oryzae is also emerging as a major pathogen of wheat. During rice infection, dome-shaped fungal cells called appressoria form on the surface of the rice leaf and access the underlying epidermal cells. Remarkably, fungal growth in living rice cells, called biotrophy, occurs for the first days of infection without activating the robust plant defenses that normally work to keep the host plant disease-free. Yet, despite the fundamental importance of this biotrophic growth stage to crop health, little is known about how plant defense suppression and fungal growth is integrated in host cells. To address these knowledge gaps, this proposal asks: How do fungal cells thrive in rice cells? To answer this, research will be directed towards characterizing mutants of M. oryzae that are impaired in their ability to colonize rice cells in order to unlock the fundamental cellular, biochemical, and genetic regulatory mechanisms that govern the rice-fungus interaction. This work could point to much needed robust and sustainable mitigation strategies and shed light on fundamental growth processes in fungi. The proposed work will foster the molecular training of postdoctoral, graduate and undergraduate students from diverse backgrounds through active participation in tackling the real-world problem of rice blast disease.By addressing the fundamental question "What molecular mechanisms coordinate sustained fungal growth and plant defense suppression in the host cell?" This project aims to resolve substantial issues in plant pathology regarding the processes by which fungal pathogens thrive in plant cells. The stated objectives will use forward and reverse genetics, genome-wide proteomic and metabolic approaches, and live-cell imaging to define key exploitable differences in the metabolism of M. oryzae compared to host rice cells. This could lead to the development of novel crop protection strategies targeting molecular pathways that are critical for the biotrophic growth of the fungus but are not required for the normal function of the host cell, and could shed new light on the basic principles of cell growth. The educational objective will expand scientific education by stimulating undergraduates' science learning, preparing graduate students for scientific life beyond the university, and inspiring scientific interest in minority high school students.
爆炸是由真菌斑ryzae引起的,是耕种大米的最严重疾病,是全球粮食安全威胁,每年导致全球水稻产量降低10-30%。 M. oryzae也是小麦的主要病原体。在水稻感染期间,圆顶形的真菌细胞在水稻表面上称为Appressoria形式,并进入基础表皮细胞。值得注意的是,活的水稻细胞中的真菌生长被称为培养基,在感染的头几天发生,而无需激活通常有效的植物防御能力以保持宿主植物性无病。然而,尽管这种生物营养生长阶段对农作物的健康至关重要,但对于植物防御抑制和真菌的生长如何整合到宿主细胞中,知之甚少。为了解决这些知识差距,该提案提出:真菌细胞如何在水稻细胞中壮成长?为了回答这一点,研究将针对表征牛肉菌的突变体,这些突变体在定居水稻细胞的能力中受到损害,以解锁控制水稻 - 联邦相互作用的基本细胞,生化和遗传调节机制。这项工作可能指出了急需的强大和可持续的缓解策略,并阐明了真菌的基本增长过程。拟议的工作将促进来自不同背景的博士后,研究生和本科生的分子训练,通过积极参与解决水稻爆炸疾病的现实问题。通过解决基本问题“哪些分子机制协调了宿主细胞中的真菌生长和植物防御抑制的持续真菌生长和植物防御?”该项目旨在解决有关植物病理学中关于真菌病原体在植物细胞中生长的过程的重大问题。与宿主水稻细胞相比,陈述的目标将使用前进和反向遗传学,全基因组蛋白质组学和代谢方法以及活细胞成像来定义蜂巢代谢的主要利用差异。这可能会导致针对分子途径的新型农作物保护策略的发展,这对造物的生物营养至关重要,但对于宿主细胞的正常功能而言并不是必需的,并且可能对细胞生长的基本原理有了新的启示。该教育目标将通过刺激大学生的科学学习,为研究生的科学生活做好准备,并激发对少数族裔高中生的科学兴趣,从而扩大科学教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Wilson其他文献
One Solution to the Arsenic Problem: A Return to Surface (Improved Dug) Wells
砷问题的一种解决方案:返回地面(改进的挖掘)井
- DOI:
10.3329/jhpn.v24i3.722 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
S. A. Joya;G. Mostofa;J. Yousuf;A. Islam;A. Elahi;Golam Mahiuddin;Mahmuder Rahman;Q. Quamruzzaman;Richard Wilson - 通讯作者:
Richard Wilson
Introduction. Global Shakespeare: This Wide and Universal Theatre
介绍。
- DOI:
10.14198/raei.2012.25.01 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Richard Wilson - 通讯作者:
Richard Wilson
tRNA modification and codon usage control pathogen secretion in host cells
tRNA 修饰和密码子使用控制宿主细胞中病原体的分泌
- DOI:
10.21203/rs.3.rs-1690424/v1 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Gang Li;Ziwen Gong;Nawaraj Dulal;Richard Wilson - 通讯作者:
Richard Wilson
Exploring Variance in Users’ Moods across Times, Seasons, and Activities: A Longitudinal Analysis
探索用户情绪随时间、季节和活动的变化:纵向分析
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Gerry Chan;Ala'a N. Alslaity;Richard Wilson;Rita Orji - 通讯作者:
Rita Orji
スマトラ島で観測されたオゾン変動と力学場の関係について
关于苏门答腊岛观测到的臭氧波动与机械场之间的关系
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Momoko Hashino;Hiroyuki Hashiguchi;Richard Wilson;Shinya Ogino;and Junko Suzuki;鈴木順子・荻野慎也・木下武也・城岡竜一・岩崎杉紀・米山邦夫 - 通讯作者:
鈴木順子・荻野慎也・木下武也・城岡竜一・岩崎杉紀・米山邦夫
Richard Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Wilson', 18)}}的其他基金
On the nature and regulation of the plant-fungal biotrophic interface
植物-真菌生物营养界面的性质和调节
- 批准号:
2106153 - 财政年份:2022
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
CAREER: Superdiffusive Heat Transfer in Nanoscale Metal Multilayers
职业:纳米级金属多层中的超扩散传热
- 批准号:
1847632 - 财政年份:2019
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Molecular mechanisms integrating fungal growth with plant innate immunity suppression
真菌生长与植物先天免疫抑制相结合的分子机制
- 批准号:
1758805 - 财政年份:2019
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
Conjugate Plane Photometry: Reducing Scintillation Noise in Ground-Based Astronomical Photometry
共轭平面光度测定:减少地基天文光度测定中的闪烁噪声
- 批准号:
ST/J001236/1 - 财政年份:2012
- 资助金额:
$ 57万 - 项目类别:
Research Grant
Pathogenic Gene Discovery and Elucidation of Genetic Regulatory Networks in the Rice Blast Fungus
稻瘟病菌致病基因的发现和遗传调控网络的阐明
- 批准号:
1145347 - 财政年份:2012
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
A Multiscale Framework for Forecasting Highway Traffic Flow
预测公路交通流量的多尺度框架
- 批准号:
EP/E055567/2 - 财政年份:2010
- 资助金额:
$ 57万 - 项目类别:
Fellowship
Improving the Sequence of the Maize Genome
改进玉米基因组的序列
- 批准号:
0910642 - 财政年份:2009
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Grant: Evaluating Retributive Justice in Croatia
博士论文改进补助金:评估克罗地亚的报应性正义
- 批准号:
0851064 - 财政年份:2009
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Development of an integrated ELT-capable adaptive optics simulation facility
开发具有 ELT 功能的集成自适应光学模拟设施
- 批准号:
PP/E007570/1 - 财政年份:2007
- 资助金额:
$ 57万 - 项目类别:
Research Grant
A Multiscale Framework for Forecasting Highway Traffic Flow
预测公路交通流量的多尺度框架
- 批准号:
EP/E055567/1 - 财政年份:2007
- 资助金额:
$ 57万 - 项目类别:
Fellowship
相似国自然基金
紧密连接蛋白ZO-1介导蛋清活性肽细胞旁路吸收的分子机制
- 批准号:32372375
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
TPK1调控E3连接酶TRAF7磷酸化抑制细胞焦亡在心肌缺血再灌注微循环损伤中的分子机制
- 批准号:82300378
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
缝隙连接Cx43磷酸化修饰介导钙信号传递异常参与尼古丁致肺动脉重构的分子机制
- 批准号:82373622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶TRIM32介导TRIF信号通路泛素化调控仔猪肠道炎性损伤的分子机制研究
- 批准号:32360819
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
E3泛素连接酶PbrPUB34介导PbrFIT降解参与茉莉酸调控梨铁吸收的分子机制
- 批准号:32302510
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing Mechanisms of Polycystin-1 Regulation Using Peptide Modulators Designed by Sequence- and Structure-Based Learning
使用基于序列和结构的学习设计的肽调制器探索多囊蛋白-1 调节机制
- 批准号:
10917464 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Connecting transcriptional control to mechanisms of morphogenesis
将转录控制与形态发生机制联系起来
- 批准号:
10398905 - 财政年份:2020
- 资助金额:
$ 57万 - 项目类别:
Mechanisms connecting dysregulated BCAA, glucose & lipid metabolism in the pathogenesis of metabolic disease
连接支链氨基酸失调、葡萄糖的机制
- 批准号:
10457911 - 财政年份:2019
- 资助金额:
$ 57万 - 项目类别:
Mechanisms connecting dysregulated BCAA, glucose & lipid metabolism in the pathogenesis of metabolic disease
连接支链氨基酸失调、葡萄糖的机制
- 批准号:
9792043 - 财政年份:2019
- 资助金额:
$ 57万 - 项目类别:
Mechanisms connecting dysregulated BCAA, glucose & lipid metabolism in the pathogenesis of metabolic disease
连接失调的 BCAA、葡萄糖的机制
- 批准号:
10223286 - 财政年份:2019
- 资助金额:
$ 57万 - 项目类别: