Probing Mechanisms of Polycystin-1 Regulation Using Peptide Modulators Designed by Sequence- and Structure-Based Learning
使用基于序列和结构的学习设计的肽调制器探索多囊蛋白-1 调节机制
基本信息
- 批准号:10917464
- 负责人:
- 金额:$ 9.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2024-09-20
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAdhesionsAffectAgonistAmericanApplications GrantsAutosomal Dominant Polycystic KidneyBase SequenceBindingBiochemicalBiological AssayC-terminalCellsCellular AssayCharacteristicsComputational TechniqueConnecting StalkCoupledCryoelectron MicroscopyDataDevelopmentDiseaseDissectionDockingEmbryoFoundationsFree EnergyFutureG-Protein-Coupled ReceptorsGTP-Binding ProteinsGenetic DiseasesGoalsIn VitroKidneyKnowledgeLeadLearningLigandsMachine LearningMapsMediatingMembraneMethodologyMethodsModelingMolecularMutant Strains MiceMutationN-terminalOrgan Culture TechniquesPKD1 genePathway interactionsPatternPeptidesPhysicsProteinsProteolysisProtocols documentationPublishingReagentRegulationReporterSequence HomologsSignal PathwaySignal TransductionSignaling ProteinSiteStructureTestingTherapeuticTransmembrane DomainUnited States National Institutes of HealthWorkdeep learningdeep learning modeldesignexperimental analysisexperimental studyextracellularmolecular dynamicsmutantnovelpolycystic kidney disease 1 proteinsimulationsynthetic peptidetherapeutically effectivetoolvirtual screening
项目摘要
Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially lethal genetic
disease. ADPKD is caused mainly by mutations in the PKD1 gene, which encodes the polycystin-1 (PC1)
protein. Therapeutic treatment of ADPKD that targets the proximal signaling functions of PC1 has yet to be
discovered. PC1 is an important unusual G-protein-coupled receptor (GPCR) with 11 transmembrane (TM)
domains. PC1 shares multiple characteristics with Adhesion GPCRs. These include a GPCR proteolysis site
that autocatalytically divides these proteins into extracellular, N-terminal and membrane-embedded, C-terminal
(CTF) fragments. A tethered peptide agonist (TA) within the N-terminal stalk of the CTF has been suggested to
activate signaling of PC1. Using the cryo-EM structure of PC1, we have recently revealed a novel allosteric
TA/stalk-mediated signaling mechanism of PC1 by combining complementary all-atom Gaussian accelerated
molecular dynamics (GaMD) simulations and biochemical and cellular assay experiments. Moreover, we have
uncovered unique features of activation and allosteric modulation in the A and B classes of GPCRs from
sequence coevolutionary “Potts” models and structural contact analysis. We have shown how “Potts” models fit
to homologous sequences can be used to generate and detect cryptic functionality of multiresidue sequence
motifs involved in allosteric binding and signaling. In addition, we have developed the GaMD, Deep Learning
and free energy prOfiling Workflow (GLOW) to predict molecular determinants and map free energy
landscapes of functional biomolecules. Building upon these advances, we will design and test novel peptide
modulators to probe mechanisms of PC1 signaling regulation by combining state-of-the-art computational
techniques (including sequence coevolutionary Potts models, GaMD, GLOW and peptide docking) and
complementary cellular signaling experiments. Our specific aims include: (1) Characterize the binding
mechanisms of known TA/stalk-derived peptide modulators of PC1 through sequence coevolution analysis,
peptide docking, and AI modeling; and (2) Predict and validate new peptide modulators of PC1 through Potts
modeling, peptide virtual screening, and cellular signaling assays. Therefore, we will implement a unique
computational sequence- and structure-based learning approach coupled with relevant in vitro experimental
analyses to develop novel peptide modulators of PC1. Our long-term goals are (1) to develop robust
computational and experimental methodologies to characterize protein-peptide interactions, (2) to understand
mechanisms of signaling in the wildtype and ADPKD disease mutants of PC1, and (3) to lay the foundation for
the future design of effective therapeutics for treatment of ADPKD.
常染色体显性多囊性肾脏疾病(ADPKD)是最常见的致命通用性
疾病。 ADPKD主要是由PKD1基因中的突变引起的,该突变编码了Polycystin-1(PC1)
蛋白质。针对PC1近端信号传导功能的ADPKD的治疗治疗尚未
发现。 PC1是具有11个跨膜(TM)的重要不寻常的G蛋白偶联受体(GPCR)
域。 PC1与粘附GPCR共享多个特征。这些包括GPCR蛋白水解位点
自催化将这些蛋白质分为细胞外,N末端和膜的C末端
(CTF)碎片。已建议在CTF的N末端茎内的链状肽激动剂(TA)
激活PC1的信号传导。使用PC1的冷冻EM结构,我们最近揭示了一种新型的变构
通过结合互补的全原子高斯加速,ta/stalk介导的PC1信号传导机制
分子动力学(GAMD)模拟以及生化和细胞测定实验。而且,我们有
从A和B类中发现了来自A和B类的独特特征
序列协同进化的“ potts”模型和结构接触分析。我们已经展示了“ potts”模型如何拟合
到同源序列可用于生成和检测多膜片序列的加密功能
参与变构结合和信号传导的基序。此外,我们已经开发了大量的深度学习
和自由能谱分析工作流程(GLOW),以预测分子确定器并绘制自由能
功能性生物分子的景观。在这些进步的基础上,我们将设计和测试新型肽
调节器通过结合最先进的计算来探测PC1信号调节的机制
技术(包括序列协调性的Potts模型,GAMD,GLOW和PEPPERED DOCKING)和
互补的细胞信号传导实验。我们的具体目的包括:(1)表征绑定
通过序列协同进化分析,PC1的已知TA/茎衍生肽调节剂的机制,
肽对接和AI建模; (2)通过POTTS预测并验证PC1的新肽调节剂
建模,胡椒虚拟筛选和细胞信号传导测定。因此,我们将实施独特的
基于计算序列和基于结构的学习方法以及相关的体外实验
分析以开发PC1的新型肽调节剂。我们的长期目标是(1)发展强大
表征蛋白质肽相互作用的计算和实验方法,(2)了解
PC1的野生型和ADPKD疾病突变体中信号传导的机制,(3)为
有效治疗ADPKD的未来设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allan Haldane其他文献
Allan Haldane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Analyzing the role of cAMP and STAT3 signaling in cartilage homeostasis and osteoarthritis development
分析 cAMP 和 STAT3 信号在软骨稳态和骨关节炎发展中的作用
- 批准号:
10822167 - 财政年份:2023
- 资助金额:
$ 9.89万 - 项目类别:
The mechanics of host cell repopulation of engineered tissues
工程组织的宿主细胞再生机制
- 批准号:
10580269 - 财政年份:2023
- 资助金额:
$ 9.89万 - 项目类别:
Endothelial dysfunction in clonal hematopoiesis and its contribution to cardiovascular complications
克隆造血中的内皮功能障碍及其对心血管并发症的影响
- 批准号:
10481299 - 财政年份:2023
- 资助金额:
$ 9.89万 - 项目类别:
Development of optoelectronically active nerve adhesive for accelerating peripheral nerve repair
开发用于加速周围神经修复的光电活性神经粘合剂
- 批准号:
10811395 - 财政年份:2023
- 资助金额:
$ 9.89万 - 项目类别: