Approximation, deformation-rigidity and classification in II 1 factor framework
II 1 因子框架中的近似、变形刚度和分类
基本信息
- 批准号:1400208
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"Rigidity" in mathematics occurs when objects in a certain class (functions, function algebras, etc.) can be recognized by knowing very little information about them. Regidity results are usually interdisciplinary and can be relevant to many areas of mathematics, with applications to computer science, complexity theory, design of computer networks, and the theory of error-correcting codes. The principal investigator's work in recent years has to do with the study of rigidity in so-called von Neumann algebras. These are algebras of infinite matrices in which the product of two elements (A times B, say) may be different from the product in reverse order (B times A), a fact that reflects Heisenberg's Uncertainty Principle in the quantum mechanics of particle physics. They are related to group theory and ergodic theory, since actions of groups on spaces give rise to a class of von Neumann algebras, now known as "factors." Rigidity in this context occurs when the group of transformations can be recognized by merely knowing its associated factor. During the period 2001-2010, the principal investigator developed a series of techniques to study such phenomena (namely, deformation-rigidity theory) to which he recently added a powerful approximation technique. In this project, he intends to combine all these tools to study rigidity in factors and to tackle the two most famous problems in the area: the Connes approximate embedding conjecture and the free group factor problem. The Connes conjecture predicts that factors can be "simulated on a computer" and has an interesting reformulation in quantum information theory. The project should contribute to the cross-pollination of several areas of mathematics (e.g., free probability, random matrices, group theory, logic) and lead to progress in each of them. The principal investigator's research in rigidity theory has already had considerable impact on these areas, with a large number of research articles and Ph.D. theses sprouting directly from his work. He expects his techniques to have an even broader impact in the future, leading to new developments and solutions to problems in a variety of subjects, with direct and indirect impact in applied mathematics and the aforememtioned areas of computer science. In this project, the principal investigator intends to further the development of deformation-rigidity theory by incorporating into it a new approximation technology known as incremental patching. Using this array of tools, he will continue to work on the classification of algebras arising from groups and their actions on spaces, as well as on the study of rigidity properties of these objects and the calculation of their symmetries. In particular, the principal investigator will attempt new approaches to two famous problems in two-one factors: the Connes approximate embedding conjecture and the free group factor problem. The problems studied in this project are important to both von Neumann algebra theory and the adjacent areas of group theory, ergodic theory, logic (descriptive set theory), free probability, and subfactor theory. Together with his students and collaborators, the principal investigator will make efforts to broaden the scope of deformation-rigidity theory, strengthening its interactions with all these (and possibly other) areas, an activity that should lead to further surprising results of an interdisciplinary character. Also, the principal investigator intends to continue to disseminate his new techniques through summer programs, mini-courses, textbooks, and expository articles, as well as through conferences that he will conduct and organize.
当某一类对象(函数、函数代数等)可以通过了解很少的信息来识别时,数学中的“刚性”就会出现。刚性结果通常是跨学科的,可以与数学的许多领域相关,包括计算机科学、复杂性理论、计算机网络设计和纠错码理论的应用。首席研究员近年来的工作与所谓冯·诺依曼代数中的刚性研究有关。这些是无限矩阵的代数,其中两个元素的乘积(例如 A 乘以 B)可能不同于逆序的乘积(B 乘以 A),这一事实反映了粒子物理量子力学中海森堡的不确定性原理。它们与群论和遍历理论相关,因为群在空间上的作用产生了一类冯诺依曼代数,现在称为“因子”。当仅通过知道其相关因素就可以识别一组变换时,就会出现这种情况下的刚性。 2001年至2010年期间,首席研究员开发了一系列技术来研究此类现象(即变形-刚性理论),最近他在其中添加了强大的近似技术。 在这个项目中,他打算结合所有这些工具来研究因子的刚性,并解决该领域两个最著名的问题:Connes 近似嵌入猜想和自由群因子问题。康尼斯猜想预测因素可以“在计算机上模拟”,并且在量子信息论中进行了有趣的重新表述。 该项目应有助于数学多个领域(例如自由概率、随机矩阵、群论、逻辑)的交叉授粉,并推动每个领域的进步。主要研究者在刚性理论方面的研究已经在这些领域产生了相当大的影响,发表了大量的研究论文和博士学位。论文直接源于他的工作。他预计他的技术将在未来产生更广泛的影响,带来各种学科问题的新发展和解决方案,对应用数学和上述计算机科学领域产生直接和间接的影响。在该项目中,主要研究人员打算通过将一种称为增量修补的新近似技术纳入其中,进一步发展变形刚度理论。使用这一系列工具,他将继续致力于对群产生的代数及其在空间上的作用进行分类,以及研究这些物体的刚性特性及其对称性的计算。特别是,首席研究员将尝试新的方法来解决二一因子中的两个著名问题:Connes近似嵌入猜想和自由群因子问题。该项目研究的问题对于冯·诺依曼代数理论以及群论、遍历理论、逻辑(描述性集合论)、自由概率和子因子理论的邻近领域都很重要。首席研究员将与他的学生和合作者一起努力扩大变形刚度理论的范围,加强其与所有这些(可能还有其他)领域的相互作用,这项活动应该会带来跨学科特征的进一步令人惊讶的结果。此外,首席研究员打算继续通过暑期项目、迷你课程、教科书和说明性文章以及他将主持和组织的会议传播他的新技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sorin Popa其他文献
BAVARD’S DUALITY THEOREM ON CONJUGATION-INVARIANT NORMS
共轭不变范数的巴伐德对偶定理
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
M. O. K. Awasaki;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy - 通讯作者:
Silvio Levy
On a spectral theorem in paraorthogonality theory
论正交性理论中的谱定理
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
K. E. C. Astillo;;ÍO FRANCISCOPERDOMO;R. U. C. R. ;DE Departamento;A. N. M. Atemático;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Jie Qing;Daryl Cooper;Jiang;Paul Yang;Silvio Levy - 通讯作者:
Silvio Levy
Mathematics ON PERIODIC POINTS OF SYMPLECTOMORPHISMS ON SURFACES
曲面上共形周期点的数学
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
M. A. B. Atoréo;D. E. D. M. Atemática;Paul Balmer;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Jie Qing;Daryl Cooper;Jiang;Paul Yang;Silvio Levy - 通讯作者:
Silvio Levy
THE LEGACY OF VAUGHAN JONES IN II1 FACTORS
沃恩琼斯在 II1 因素方面的遗产
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sorin Popa - 通讯作者:
Sorin Popa
ON A CLASS OF II1 FACTORS WITH AT MOST ONE CARTAN SUBALGEBRA, II By NARUTAKA OZAWA and SORIN POPA Dedicated to Uffe Haagerup on his 60th birthday
关于具有至多一个嘉当子代数的 II1 类因子,II 作者:NARUTAKA OZAWA 和 SORIN POPA 献给 Uffe Haagerup 60 岁生日
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Sorin Popa - 通讯作者:
Sorin Popa
Sorin Popa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sorin Popa', 18)}}的其他基金
Ergodic Embeddings, Bimodule Decomposition, and the Structure of Type II1 Factors
遍历嵌入、双模分解和 II1 型因子的结构
- 批准号:
1955812 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Rigidity, Cohomology, and Approximate Embeddings in von Neumann Algebra Factors
冯诺依曼代数因子中的刚性、上同调和近似嵌入
- 批准号:
1700344 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Deformation and Rigidity for Groups, Actions, and von Neumann Algebras
群、作用和冯诺依曼代数的变形和刚度
- 批准号:
1101718 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Noncommutative Symmetries and Renormalization
非交换对称性和重整化
- 批准号:
0601082 - 财政年份:2006
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Proposal for a Conference "Beyond amenability: Groups, Actions and Operator Algebras" to be held at UCLA, May 2006
提议于 2006 年 5 月在加州大学洛杉矶分校召开“超越便利性:群、行动和算子代数”会议
- 批准号:
0555672 - 财政年份:2006
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Conference on Recent Developments in von Neumann Algebras; May 14-17, 2003; Los Angeles, CA
冯诺依曼代数最新发展会议;
- 批准号:
0315442 - 财政年份:2003
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
面向非刚性形变目标的CNN分块轮廓跟踪方法研究
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
无空间变换依赖的大几何畸变影像特征匹配模型研究
- 批准号:41901398
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
数量曲率、Q-曲率及一般黎曼不变量形变的研究
- 批准号:11601531
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
Lorentz空间形式中子流形的刚性和形变问题
- 批准号:11571037
- 批准年份:2015
- 资助金额:45.0 万元
- 项目类别:面上项目
基于个性化形变模型与混合模糊相似度的前列腺多模图像非刚体部分配准方法研究
- 批准号:61571304
- 批准年份:2015
- 资助金额:67.0 万元
- 项目类别:面上项目
相似海外基金
Deformation/rigidity theoryと冨田・竹崎理論
变形/刚性理论和富田竹崎理论
- 批准号:
20K14324 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deformation/rigidity theory in von Neumann algebras and ergodic theory
冯诺依曼代数中的变形/刚性理论和遍历理论
- 批准号:
1500998 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Deformation/rigidity theory in von Neumann algebras and ergodic theory
冯诺依曼代数中的变形/刚性理论和遍历理论
- 批准号:
1201565 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Deformation and Rigidity for Groups, Actions, and von Neumann Algebras
群、作用和冯诺依曼代数的变形和刚度
- 批准号:
1101718 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Derivations, quantum Dirichlet forms, and deformation/rigidity theory in von Neumann algebras
冯诺依曼代数中的导数、量子狄利克雷形式和变形/刚性理论
- 批准号:
0901510 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant