Rigidity, Cohomology, and Approximate Embeddings in von Neumann Algebra Factors

冯诺依曼代数因子中的刚性、上同调和近似嵌入

基本信息

  • 批准号:
    1700344
  • 负责人:
  • 金额:
    $ 18.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

The driving force behind many exciting developments in mathematics and its applications in recent years has been the dichotomy between structure (order, rigidity, etc.) and randomness (lack of structure, disorder, coarseness). This project concerns a powerful technique, called deformation-rigidity theory, to study these opposing phenomena in the framework of von Neumann algebras, i.e., algebras of infinite matrices, where the product of two elements, A times B, may be different from the product in reverse order, B times A, a fact that reflects the laws of quantum mechanics in particle physics (Heisenberg's Uncertainty Principle). Von Neumann algebras are also related to group theory and ergodic theory, since transformations of spaces give rise to a special class of such algebras called II1 factors. Rigidity in this context occurs when the group of transformations can be recognized by merely knowing its associated II1 factor (which is a very coarse object). The study of rigidity of factors is an interdisciplinary endeavor and can be relevant to many areas of mathematics. It also has applications to computer science, complexity theory, design computer networks, and the theory of error-correcting codes. This research project aims to deepen understanding in this important area.The principal investigator recently added several new tools to this study, namely an approximation/simulation technique, a representation theory, and a cohomology. In this project, he intends to combine all these tools to further study rigidity-versus-randomness phenomena in II1 factors and to tackle several famous problems in this area: the Connes Approximate Embedding (CAE) conjecture, the sofic group problem, the free group factor problem, the paving problem, and calculations of invariants for group-like objects. It should be noted that the CAE conjecture, which predicts that II1 factors can be "simulated" on a computer, would have striking consequences in quantum information theory.
近年来,许多令人兴奋的数学发展及其应用的驱动力是结构(顺序,刚性等)和随机性(缺乏结构,混乱,粗糙)之间的二分法。 This project concerns a powerful technique, called deformation-rigidity theory, to study these opposing phenomena in the framework of von Neumann algebras, i.e., algebras of infinite matrices, where the product of two elements, A times B, may be different from the product in reverse order, B times A, a fact that reflects the laws of quantum mechanics in particle physics (Heisenberg's Uncertainty Principle).冯·诺伊曼(Von Neumann)代数也与群体理论和千古理论有关,因为空间的变换引起了一类称为II1因子的代数类别。在这种情况下,刚性在这种情况下仅通过知道其相关的II1因子(这是一个非常粗糙的对象)来识别的转换群。对因素的刚性研究是一项跨学科的努力,并且可能与许多数学领域有关。它还对计算机科学,复杂性理论,设计计算机网络以及错误校正代码理论的应用。该研究项目旨在加深对这一重要领域的理解。首席研究者最近在这项研究中添加了几种新工具,即一种近似/仿真技术,代表理论和共同体学。在这个项目中,他打算将所有这些工具结合起来,以进一步研究II1因素中的刚性与随机性现象,并解决该领域的几个著名问题:Connes近似嵌入(CAE)猜想,SOFIC组问题,自由小组因素问题,自由组因子问题,自由群体问题,对小组式对象的不变对象的计算。应当指出的是,CAE猜想预测可以在计算机上“模拟” II1因素,这将在量子信息理论中产生巨大的后果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Sorin Popa其他文献

A unique decomposition result for HT factors with torsion free core
  • DOI:
    10.1016/j.jfa.2006.05.016
    10.1016/j.jfa.2006.05.016
  • 发表时间:
    2007-01-15
    2007-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sorin Popa
    Sorin Popa
  • 通讯作者:
    Sorin Popa
    Sorin Popa
BAVARD’S DUALITY THEOREM ON CONJUGATION-INVARIANT NORMS
共轭不变范数的巴伐德对偶定理
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. O. K. Awasaki;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy
    M. O. K. Awasaki;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy
  • 通讯作者:
    Silvio Levy
    Silvio Levy
On a spectral theorem in paraorthogonality theory
论正交性理论中的谱定理
  • DOI:
  • 发表时间:
    2016
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. E. C. Astillo;;ÍO FRANCISCOPERDOMO;R. U. C. R. ;DE Departamento;A. N. M. Atemático;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Jie Qing;Daryl Cooper;Jiang;Paul Yang;Silvio Levy
    K. E. C. Astillo;;ÍO FRANCISCOPERDOMO;R. U. C. R. ;DE Departamento;A. N. M. Atemático;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Jie Qing;Daryl Cooper;Jiang;Paul Yang;Silvio Levy
  • 通讯作者:
    Silvio Levy
    Silvio Levy
CONTINUOUS FAMILIES OF HYPERFINITE SUBFACTORS WITH THE SAME STANDARD INVARIANT
具有相同标准不变量的超有限子因子连续族
Conformal holonomy equals ambient holonomy
适形完整性等于环境完整性
  • DOI:
    10.2140/pjm.2016.285.303
    10.2140/pjm.2016.285.303
  • 发表时间:
    2015
    2015
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    AP ANDREASˇC;A. R. O. G. Over;C. R. Obin;G. R. And;M. A. H. Ammerl;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy
    AP ANDREASˇC;A. R. O. G. Over;C. R. Obin;G. R. And;M. A. H. Ammerl;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy
  • 通讯作者:
    Silvio Levy
    Silvio Levy
共 10 条
  • 1
  • 2
前往

Sorin Popa的其他基金

Ergodic Embeddings, Bimodule Decomposition, and the Structure of Type II1 Factors
遍历嵌入、双模分解和 II1 型因子的结构
  • 批准号:
    1955812
    1955812
  • 财政年份:
    2020
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Standard Grant
    Standard Grant
Approximation, deformation-rigidity and classification in II 1 factor framework
II 1 因子框架中的近似、变形刚度和分类
  • 批准号:
    1400208
    1400208
  • 财政年份:
    2014
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Deformation and Rigidity for Groups, Actions, and von Neumann Algebras
群、作用和冯诺依曼代数的变形和刚度
  • 批准号:
    1101718
    1101718
  • 财政年份:
    2011
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Noncommutative Symmetries and Renormalization
非交换对称性和重整化
  • 批准号:
    0601082
    0601082
  • 财政年份:
    2006
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Proposal for a Conference "Beyond amenability: Groups, Actions and Operator Algebras" to be held at UCLA, May 2006
提议于 2006 年 5 月在加州大学洛杉矶分校召开“超越便利性:群、行动和算子代数”会议
  • 批准号:
    0555672
    0555672
  • 财政年份:
    2006
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Standard Grant
    Standard Grant
Conference on Recent Developments in von Neumann Algebras; May 14-17, 2003; Los Angeles, CA
冯诺依曼代数最新发展会议;
  • 批准号:
    0315442
    0315442
  • 财政年份:
    2003
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于单细胞多组学解析不同时间段运动改善超重个体代谢的免疫图谱与调控网络
  • 批准号:
    32371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
构建同时识别原癌信号和抑癌信号的合成生物学基因线路
  • 批准号:
    32101169
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
构建同时识别原癌信号和抑癌信号的合成生物学基因线路
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于不同时间尺度约束的东昆仑断裂东段运动学特征研究
  • 批准号:
    41872226
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
基于多组学数据整合的不同时期胃癌动态调控机制研究
  • 批准号:
    31801118
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
  • 批准号:
    2340239
    2340239
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
  • 批准号:
    23K03029
    23K03029
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
  • 批准号:
    23H00083
    23H00083
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
    Grant-in-Aid for Scientific Research (A)
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
  • 批准号:
    2306204
    2306204
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Standard Grant
    Standard Grant
Cohomology theories for algebraic varieties
代数簇的上同调理论
  • 批准号:
    2883661
    2883661
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
    $ 18.6万
  • 项目类别:
    Studentship
    Studentship