Ergodic Embeddings, Bimodule Decomposition, and the Structure of Type II1 Factors

遍历嵌入、双模分解和 II1 型因子的结构

基本信息

  • 批准号:
    1955812
  • 负责人:
  • 金额:
    $ 40.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Rigidity in mathematics occurs when certain geometric objects, such as a group of transformations, can be recognized by merely knowing some partial information, such as their factors. Introduced by von Neumann in the 1930s to study quantum mechanics, factors are irreducible algebras of infinite matrices, where the product of two elements, A times B, is in general different from the product in reverse order, B times A. This project aims to combine tools including deformation-rigidity theory, ergodic embeddings, approximation and simulation techniques, and reconstruction methods to study rigidity in factors and to tackle several longstanding questions in this area. Rigidity results can be relevant to many areas of mathematics and its applications, including computer science, complexity theory, quantum information theory, the design of computer networks, and the theory of error-correcting codes. This project contributes to workforce development through the training of graduate students in topics related to the project research.A striking feature of the II1 factor framework is its ability to host both rigidity and randomness phenomena. Earlier work exploiting the tension between these opposing paradigms led to striking discoveries and to fruitful interaction between study of II1 factors and other areas, such as C*-algebras, free probability, ergodic theory, group theory (measured, geometric, arithmetic, etc.), quantum groups, random matrices, and descriptive set theory. This work developed several important techniques to study II1 factors: finite dimensional approximation and reconstruction methods in subfactor theory, deformation rigidity theory, intertwining by bimodules, and incremental patching. This project aims to employ the technique of iterative ergodic embeddings with control of bimodule structure in combination with previous techniques to tackle several important questions: (1) the non-isomorphism of the free group factors and their "coarseness," a deep structural property that generalizes many prior results and conjectures about these factors; (2) Connes' embedding conjecture (notably for groups) and the sofic group problem; and (3) Connes' bicentralizer conjecture for III1 factors. The project aims to broaden the scope of the techniques under development and to deepen the interaction of operator algebra with other areas of mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学中的刚性发生在某些几何对象(例如一组转换)可以通过仅知道某些部分信息(例如其因素)来识别时发生刚性。 Introduced by von Neumann in the 1930s to study quantum mechanics, factors are irreducible algebras of infinite matrices, where the product of two elements, A times B, is in general different from the product in reverse order, B times A. This project aims to combine tools including deformation-rigidity theory, ergodic embeddings, approximation and simulation techniques, and reconstruction methods to study rigidity in factors and to tackle该领域的几个长期问题。 刚性结果可能与数学及其应用的许多领域有关,包括计算机科学,复杂性理论,量子信息理论,计算机网络的设计以及误差校正代码的理论。该项目通过培训与项目研究相关的主题的研究生培训为劳动力发展做出了贡献。II1因子框架的惊人特征是其具有刚性和随机性现象的能力。较早利用这些相反范式之间紧张关系的工作导致了惊人的发现以及II1因素与其他领域的研究之间的富有成效的相互作用,例如C* - 代数,自由概率,千古理论,群体理论,群体理论(测量,几何,算法,算术等),量子组,随机矩阵,随机矩阵和分布性集理论。这项工作开发了几种重要的技术来研究II1因素:亚比例理论中的有限维近似和重建方法,变形刚度理论,双模型相互交织以及增量贴合。该项目的目的是利用迭代性沿牙嵌入的技术,并结合了以前的技术来控制双模型结构,以解决几个重要问题:(1)自由组因素及其“贵族”的非同态性,其“粗糙”(其“粗糙”),深层结构性的结构性概述了许多先前的结果并猜测了这些因素; (2)Connes的嵌入猜想(尤其是针对组)和SOFIC组问题; (3)III1因子的Conner's conne concontralizer猜想。该项目旨在扩大开发技术的范围,并加深操作员代数与其他数学领域的相互作用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sorin Popa其他文献

A unique decomposition result for HT factors with torsion free core
  • DOI:
    10.1016/j.jfa.2006.05.016
  • 发表时间:
    2007-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sorin Popa
  • 通讯作者:
    Sorin Popa
BAVARD’S DUALITY THEOREM ON CONJUGATION-INVARIANT NORMS
共轭不变范数的巴伐德对偶定理
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. O. K. Awasaki;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy
  • 通讯作者:
    Silvio Levy
On a spectral theorem in paraorthogonality theory
论正交性理论中的谱定理
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. E. C. Astillo;;ÍO FRANCISCOPERDOMO;R. U. C. R. ;DE Departamento;A. N. M. Atemático;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Jie Qing;Daryl Cooper;Jiang;Paul Yang;Silvio Levy
  • 通讯作者:
    Silvio Levy
CONTINUOUS FAMILIES OF HYPERFINITE SUBFACTORS WITH THE SAME STANDARD INVARIANT
具有相同标准不变量的超有限子因子连续族
  • DOI:
    10.1142/s0129167x07004011
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    D. Bisch;Remus Nicoară;Sorin Popa
  • 通讯作者:
    Sorin Popa
Conformal holonomy equals ambient holonomy
适形完整性等于环境完整性
  • DOI:
    10.2140/pjm.2016.285.303
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    AP ANDREASˇC;A. R. O. G. Over;C. R. Obin;G. R. And;M. A. H. Ammerl;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy
  • 通讯作者:
    Silvio Levy

Sorin Popa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sorin Popa', 18)}}的其他基金

Rigidity, Cohomology, and Approximate Embeddings in von Neumann Algebra Factors
冯诺依曼代数因子中的刚性、上同调和近似嵌入
  • 批准号:
    1700344
  • 财政年份:
    2017
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Continuing Grant
Approximation, deformation-rigidity and classification in II 1 factor framework
II 1 因子框架中的近似、变形刚度和分类
  • 批准号:
    1400208
  • 财政年份:
    2014
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Continuing Grant
Deformation and Rigidity for Groups, Actions, and von Neumann Algebras
群、作用和冯诺依曼代数的变形和刚度
  • 批准号:
    1101718
  • 财政年份:
    2011
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Continuing Grant
Noncommutative Symmetries and Renormalization
非交换对称性和重整化
  • 批准号:
    0601082
  • 财政年份:
    2006
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Continuing Grant
Proposal for a Conference "Beyond amenability: Groups, Actions and Operator Algebras" to be held at UCLA, May 2006
提议于 2006 年 5 月在加州大学洛杉矶分校召开“超越便利性:群、行动和算子代数”会议
  • 批准号:
    0555672
  • 财政年份:
    2006
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Standard Grant
Conference on Recent Developments in von Neumann Algebras; May 14-17, 2003; Los Angeles, CA
冯诺依曼代数最新发展会议;
  • 批准号:
    0315442
  • 财政年份:
    2003
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Standard Grant

相似国自然基金

热力学表述的二维异质界面分子插层嵌入和微结构演化的分子模拟研究
  • 批准号:
    22378185
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向资源受限嵌入式系统的深度神经网络优化和软硬件架构协同探索
  • 批准号:
    62372183
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于expander方法的三类图结构(拓扑子式、浸入、图子式)嵌入问题研究
  • 批准号:
    12301447
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字生态下隐形冠军企业跨越数字鸿沟的嵌入模式研究
  • 批准号:
    72302071
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于粒子散射层析重构与嵌入物理约束神经网络的三维湍流场即时重建方法研究
  • 批准号:
    52376160
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Language Embeddings for Proof Engineering
用于证明工程的语言嵌入
  • 批准号:
    EP/Y000242/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Research Grant
REU Site: Beyond Language: Training to Create and Share Vector Embeddings across Applications
REU 网站:超越语言:跨应用程序创建和共享向量嵌入的培训
  • 批准号:
    2244259
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Standard Grant
Learning explanable embeddings for topics and its applications
学习主题及其应用的可解释嵌入
  • 批准号:
    23K11231
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Unified Reference-Free Early Detection of Hardware Trojans via Knowledge Graph Embeddings
职业:通过知识图嵌入对硬件木马进行统一的无参考早期检测
  • 批准号:
    2238976
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: Image-based Readouts of Cellular State using Universal Morphology Embeddings
协作研究:使用通用形态学嵌入基于图像的细胞状态读出
  • 批准号:
    2348683
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了