SusChem/FRG/GOALI: Mechanochemically Based Sustainable Polymers
SusChem/FRG/GOALI:基于机械化学的可持续聚合物
基本信息
- 批准号:1307354
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis is a collaborative research project involving a partnership between the University of Illinois at Urbana-Champaign, Cornell University, and PPG Industries. It will develop polymers that utilize changes in stress state to mechanically activate -- without human intervention -- chemical reactions that signal the presence of damage and initiate repair wherever and whenever it occurs. The reduction in waste achieved through lifetime extension will contribute to a sustainable materials landscape. Mechanoresponsive polymers are created by directly linking force-activated molecules (mechanophores) into polymer chains. The complex spatial and temporal changes in stress state that precede damage in polymeric materials promote mechanophore activation, transforming it into a new chemical species for signaling or for initiating productive changes in materials properties. Realization of mechanochemically based sustainable polymers requires mechanophore motifs with amplified responses that can be activated efficiently. The proposed research entails synthesis of new mechanophores specifically for damage detection and repair, experimental and computational development of force-focusing strategies to achieve efficient force transmission to the mechanophore, and experimental evaluation of materials systems. Elucidating the fundamental, molecular-level mechanisms governing mechanophore response to macroscopic damage in polymers will be advanced through symbiotic combination of modeling and experiments. These scientific advancements will then be applied to the design and experimental evaluation of polymers that self-report and self-heal in response to tension overload, fatigue, and interfacial delamination.NON-TECHNICAL SUMMARYWaste reduction is key to a sustainable materials landscape. Plastics are ubiquitous industrial materials and their waste reduction is achievable through life extension and recycling. Given the high energy requirements, financial cost, and limited yield of plastic recycling, life extension is critically important to life cycle management. The proposed research program seeks to develop graded warning and healing systems for industrially relevant plastics. The technical approach relies on the synthesis of plastics with force sensitive molecular units called mechanophores that are activated by damage. Advances in self-reporting plastics will reduce material consumption and waste by eliminating prescheduled replacements. Self-healing capabilities for plastics can drastically extend the service lifetime of these materials. This research project will involve the education and training of several graduate students at the University of Illinois and Cornell University. These students will be part of an interdisciplinary research team working in close partnership with PPG Industries, Inc. to translate scientific advances to commercially viable plastics. The research themes of self-reporting and self-healing for sustainability provide a unique opportunity for education and outreach to the general public. A series of educational demonstrations, exhibits, and videos will be developed on how materials impact sustainability, with emphasis on zero waste. These platforms will be widely disseminated over the web and at special public engagement events.
技术摘要这是一个合作研究项目,涉及伊利诺伊大学厄巴纳-香槟分校、康奈尔大学和 PPG Industries 之间的合作伙伴关系。 它将开发利用应力状态的变化来机械激活(无需人工干预)化学反应的聚合物,这些化学反应无论何时何地发生,都会发出损坏存在的信号并启动修复。 通过延长使用寿命来减少浪费将有助于打造可持续的材料景观。力响应聚合物是通过将力激活分子(力团)直接连接到聚合物链中而产生的。聚合物材料损坏之前应力状态的复杂空间和时间变化促进了机械载体的激活,将其转化为新的化学物质,用于发出信号或引发材料特性的生产性变化。 实现基于机械化学的可持续聚合物需要具有可有效激活的放大响应的机械基序。拟议的研究需要合成专门用于损伤检测和修复的新机械基团,力聚焦策略的实验和计算开发以实现向机械基团的有效力传递,以及材料系统的实验评估。通过建模和实验的共生结合,将进一步阐明控制力团对聚合物宏观损伤响应的基本分子水平机制。然后,这些科学进步将应用于聚合物的设计和实验评估,这些聚合物能够在张力过载、疲劳和界面分层的情况下进行自我报告和自我修复。非技术摘要减少废物是可持续材料景观的关键。塑料是无处不在的工业材料,可以通过延长寿命和回收来减少塑料的浪费。鉴于能源需求高、财务成本高且塑料回收产量有限,延长使用寿命对于生命周期管理至关重要。 拟议的研究计划旨在为工业相关塑料开发分级警告和治疗系统。该技术方法依赖于塑料的合成,该塑料具有被称为机械载体的力敏感分子单元,这些分子单元会因损坏而被激活。 自我报告塑料的进步将通过消除预先安排的更换来减少材料消耗和浪费。塑料的自愈能力可以大大延长这些材料的使用寿命。 该研究项目将涉及伊利诺伊大学和康奈尔大学的几名研究生的教育和培训。这些学生将成为与 PPG Industries, Inc. 密切合作的跨学科研究团队的一部分,将科学进步转化为商业上可行的塑料。 可持续发展的自我报告和自我修复的研究主题为向公众进行教育和推广提供了独特的机会。 将制作一系列教育演示、展览和视频,介绍材料如何影响可持续性,重点是零浪费。 这些平台将通过网络和特殊的公众参与活动广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nancy Sottos其他文献
Nancy Sottos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nancy Sottos', 18)}}的其他基金
GOALI: Manufacturing USA: Energy Efficient Processing of Thermosetting Polymers and Composites
目标:美国制造:热固性聚合物和复合材料的节能加工
- 批准号:
1933932 - 财政年份:2019
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
LEAP HI: Manufacturing USA: Energy Efficient Processing of Thermoset Polymers and Composites
LEAP HI:美国制造:热固性聚合物和复合材料的节能加工
- 批准号:
1830635 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CAREER: Spatiotemporal Avalanche Kinetics in Size-Dependent Crystal Plasticity
职业:尺寸依赖性晶体可塑性的时空雪崩动力学
- 批准号:
1654065 - 财政年份:2017
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Gordon Research Conference on Multifunctional Materials and Structures: Bridging the Gap between Biological and Synthetic Systems; Ventura, California; 14-19 January 2018
戈登多功能材料和结构研究会议:弥合生物和合成系统之间的差距;
- 批准号:
1745439 - 财政年份:2017
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Molecular Tailoring of Interfacial Fracture
界面断裂的分子剪裁
- 批准号:
1161517 - 财政年份:2012
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
GOALI: Dynamic Adhesive Failure of Patterned Thin Films
目标:图案化薄膜的动态粘合失效
- 批准号:
0726742 - 财政年份:2007
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Thin Film Fracture and Decohesion in Micro- and Nano-Patterned Devices
微米和纳米图案器件中的薄膜断裂和剥离
- 批准号:
0408487 - 财政年份:2004
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
GOALI: Self-healing Polymers for Improved Fatigue Performance
GOALI:自修复聚合物可提高疲劳性能
- 批准号:
0218863 - 财政年份:2002
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Determination of Thin Film Interfacial Properties by Laser Generated Stress Waves
通过激光产生的应力波测定薄膜界面特性
- 批准号:
9988127 - 财政年份:2000
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Additive Patterning of Integrated Functional Materials on a Chip
芯片上集成功能材料的增材图案化
- 批准号:
0088206 - 财政年份:2000
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
相似国自然基金
含FRG1基因突变体的先天性马蹄内翻足疾病iPS细胞模型的建立及发病机制的初步探讨
- 批准号:81472043
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
GOALI/FRG: Layered Systems with Dynamically Evolving Structure
GOALI/FRG:具有动态演化结构的分层系统
- 批准号:
1105672 - 财政年份:2011
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
GOALI/FRG: Epitaxial Growth of Perovskite Films and Heterostructures by Atomic Layer Deposition and Molecular Beam Epitaxy
GOALI/FRG:通过原子层沉积和分子束外延来外延生长钙钛矿薄膜和异质结构
- 批准号:
1006725 - 财政年份:2010
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
GOALI/FRG: Nanoscale Magnetic Measurements in Doped Oxides
GOALI/FRG:掺杂氧化物的纳米级磁性测量
- 批准号:
1003030 - 财政年份:2010
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
GOALI/FRG: The Oxidation of Silicon Carbide and Structure-Defects-Mobility Relations
GOALI/FRG:碳化硅的氧化和结构-缺陷-迁移率关系
- 批准号:
0907385 - 财政年份:2009
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
FRG: GOALI: Collaborative Research: The Role of Polymer Molecular Architecture in Controlling Morphology in Quiescent and Flow-Induced Crystallization
FRG:GOALI:协作研究:聚合物分子结构在控制静态和流动诱导结晶形态中的作用
- 批准号:
0706450 - 财政年份:2007
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant