Collaborative Research: Numerical methods for Shallow Water Equations and Related Models

合作研究:浅水方程及相关模型的数值方法

基本信息

  • 批准号:
    1216957
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The project is aimed at developing accurate, efficient, and robust numerical methods for shallow water equations and related models, with particular reference to problems that admit non-smooth (discontinuous) solutions and to problems that involve highly disparate scales and therefore are difficult to solve numerically. Shallow water and related models are widely used as a mathematical framework to study water flows in rivers and coastal areas as well as to investigate a variety of phenomena in atmospheric sciences and oceanography. These models are systems of time-dependent partial differential equations (PDEs) that are derived using physical properties such as conservation of mass and momentum, and hydrostatic or barotropic approximations. The principal part of the proposed research will be focused on the development of new methods for solving problems involving complicated nonlinear wave phenomena, problems with complex computational domains and moving interfaces. The resulting methods, while based on high-order shock-capturing finite-volume schemes and non-dissipative mesh-free particle methods, will incorporate special numerical techniques such as numerical balancing between the terms that are balanced in the original system of PDEs (development of well-balanced schemes), ensuring positivity of all fluid layers (this is absolutely necessary for both accurate description of dry and near dry states and enforcement of nonlinear stability), accurate and efficient operator splitting, accurate and efficient interface tracking, and others that will be in the focus of the proposed research project. The proposed project will contribute significantly toward development of computational methods for shallow water and related models. Special attention will be paid to applications arising in oceanography and atmospheric sciences, in which the Coriolis forces (due to the Earth's rotation), thermodynamics, and turbulent effects have to be taken into account. The problems under study include, among others, formation and propagation of atmospheric fronts and ocean currents, propagation of tsunami waves and their on-shore arrival, as well as propagation of pollutants in various environments. The numerical methods under design will provide considerably more powerful tools for studying a variety of internal and surface water waves, including tsunami and rogue waves. These extreme waves, which arise both in deep and shallow water, have a significant impact on the safety of people and infrastructure, and are responsible for damage to ships, oil platforms, coastlines, and sea bottoms and for changes to the biological environment. Thus, understanding the physics of these extreme waves is an important task that may even contribute to saving lives.
该项目旨在为浅水方程和相关模型开发准确,高效且鲁棒的数值方法,特别是提及接受非平滑(不连续)解决方案的问题,以及涉及高度降低量表的问题,因此很难在数值上求解。浅水和相关模型被广泛用作数学框架,以研究河流和沿海地区的水流,并研究大气科学和海洋学中的各种现象。这些模型是使用物理特性(例如质量和动量保护)以及静液压或压缩近似值等物理性能得出的时间依赖性部分微分方程(PDE)的系统。拟议研究的主要部分将集中于解决涉及复杂非线性波现象,复杂计算域和移动界面的问题的新方法的发展。由此产生的方法基于高阶的有限体积方案和非缺血性无网状粒子方法,将结合特殊的数值技术,例如在原始PDES中平衡的术语之间的数值平衡,这是PDES的原始系统(这两种良好的效果)(确保良好的整体效率(确保均准确的阳性),以确保均准确的阳性,以确保其准确的阳性,并确保透明的效率(均准确地均匀地描述,都可以准确地进行干燥的效率稳定性),准确有效的操作员分裂,准确有效的界面跟踪以及其他将成为拟议的研究项目的重点。拟议的项目将有助于开发浅水和相关模型的计算方法。必须特别注意在海洋学和大气科学中产生的应用,必须考虑科里奥利力量(由于地球旋转),热力学和湍流效应。研究的问题包括大气前沿和洋流的形成和繁殖,海啸波的传播及其在近海到达以及在各种环境中污染物的繁殖。设计下的数值方法将为研究各种内部和地表水波(包括海啸和流氓波浪)提供更强大的工具。这些极端的波浪在深水和浅水中都产生,对人和基础设施的安全产生了重大影响,并负责损坏船舶,石油平台,海岸线和海底,以及对生物环境的变化。因此,了解这些极端波的物理学是一项重要的任务,甚至可能有助于挽救生命。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kurganov其他文献

Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD
  • DOI:
    10.1016/j.jcp.2024.113300
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alina Chertock;Alexander Kurganov;Michael Redle;Vladimir Zeitlin
  • 通讯作者:
    Vladimir Zeitlin
Flux globalization-based well-balanced path-conservative central-upwind scheme for two-dimensional two-layer thermal rotating shallow water equations
  • DOI:
    10.1016/j.jcp.2024.113273
  • 发表时间:
    2024-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Yangyang Cao;Alexander Kurganov;Yongle Liu;Vladimir Zeitlin
  • 通讯作者:
    Vladimir Zeitlin

Alexander Kurganov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kurganov', 18)}}的其他基金

Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
  • 批准号:
    1818666
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521009
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
  • 批准号:
    1115718
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes
基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发
  • 批准号:
    0610430
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Godunov-Type Central Schemes for Hyperbolic Problems: Further Development, Adaptation, and Applications
双曲问题的 Godunov 型中心方案:进一步发展、适应和应用
  • 批准号:
    0310585
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0196439
  • 财政年份:
    2001
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0073631
  • 财政年份:
    2000
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
  • 批准号:
    12375228
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
  • 批准号:
    42376190
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
面向国产处理器的数值计算程序超优化编译技术研究
  • 批准号:
    62372046
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
考虑应力扰动的汶川-茂县断层地震循环数值模拟研究
  • 批准号:
    42304057
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双区域自然对流耦合模型的高效数值方法研究
  • 批准号:
    12361077
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
  • 批准号:
    2308090
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了