Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes
基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发
基本信息
- 批准号:0610430
- 负责人:
- 金额:$ 21.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Development of modern technology requires robust, efficient and highlyaccurate numerical methods for solving time-dependent partialdifferential equations, including multidimensional systems of hyperbolicconservation laws, balance laws, convection-reaction-diffusion equationsand related problems. A family of simple, universal and high-resolutionfinite-volume central schemes has been recently offered as an appealingalternative to more complicated and problem oriented upwind methods.The main goal of the project is applying the central schemes to variousmulti-phase and multi-fluid flow models, the Saint-Venant system ofshallow water equations (which describes flows in rivers and coastalareas), multi-layer shallow water equations (arising in oceanology),models of transport of pollutant in shallow water, several chemotaxismodels, reactive flows (in particular, the models describing stiffdetonation waves), shallow water equations on a rotating sphere,heterogeneous elasticity, granular material flows, dusty gas models(which describe volcanic eruptions), and others. Naturally, theseapplications, especially in the cases of high space dimensions, complexgeometries and moving boundaries/interfaces, require development andimplementation of additional numerical techniques such as differentadaption strategies, hybridization with Lagrangian-type methods,accurate and efficient operator splitting, numerical balancing betweenthe terms that are balanced in the original system of partialdifferential equations (development of well-balanced schemes), andothers that will be in the focus of the proposed research project.Central schemes have proved to be a reliable and robust tool for solvingmultidimensional systems of partial differential equations that describea variety of fundamental conservation laws in fluid mechanics, gasdynamics, geophysics, meteorology, magnetohydrodynamics, astrophysics,multi-component flows, granular flows, reactive flows, semiconductors,non-Newtonian flows, geometric optics, traffic flow, image processing,financial and biological modeling, differential games, optimal control,and many other areas. However, the models used in most practicalapplications are more complicated than just hyperbolic systems ofconservation laws, and therefore central schemes may only serve as abasis in designing robust, efficient and highly accurate numericalmethods. This project is aimed at developing a series of supplementarytechniques that are essential for the extension of applicability ofcentral schemes to many practically important problems, some of themare currently out of reach because the existing numerical methods areeither too inefficient/inaccurate or not applicable at all.
现代技术的开发需要强大,高效且高度准确的数值方法,以解决时间依赖时间的偏差方程,包括多维超固定法的多维系统,平衡法律,对流反应扩散方程和相关问题。最近已经提供了一个简单,通用和高分辨率 - 体积中央计划的家族,以吸引更复杂和面向问题的上风方法。模型,shallow水方程的圣人系统(描述了河流和沿海地区的流动),多层浅水方程(在海洋学中产生),在浅水中污染物的运输模型,几种趋化性流动,尤其是反应性流动(尤其是反应性流动)描述僵局的模型),旋转球体上的浅水方程,异质弹性,颗粒状物质流,尘土飞扬的气模型(描述火山喷发)等。自然地,尤其是在高空间维度,复杂地理和移动边界/界面的情况下,需要开发并实现其他数值技术,例如不同的启动策略,与Lagrangian-type方法的混合,准确,高效的操作员拆分,数值平衡的术语在原始方程式的原始系统(制定均衡的方案的开发)中,将成为拟议的研究项目的重点。事实证明,中央方案被证明是求解偏差方程的极限系统的可靠和强大的工具描述流体力学,煤气组织,地球物理学,气象,磁性水力学,天体物理学,多组分流,颗粒状流,反应性流,半导体,非纽顿流动,非纽顿流动,非牛顿流动,几何流动,流量流动,金融,金融,金融,金融,金融,金融,金融和生物流动,流量,金融流动,,建模,差异游戏,最佳控制以及许多其他领域。但是,在大多数实用应用中使用的模型比仅仅是保护定律的双曲线系统更为复杂,因此中央方案只能在设计强大,高效且高度准确的数值方法中充当憎恶。该项目旨在开发一系列的补充技术,这些补充技术对于将适用性的式中心方案扩展到许多实际重要的问题至关重要,目前有些实际上是无法触及的,因为现有的数值方法太效率低/不准确或完全不适用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kurganov其他文献
Alexander Kurganov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kurganov', 18)}}的其他基金
Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
- 批准号:
1818666 - 财政年份:2018
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
- 批准号:
1521009 - 财政年份:2015
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
Collaborative Research: Numerical methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
- 批准号:
1216957 - 财政年份:2012
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
- 批准号:
1115718 - 财政年份:2011
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
Godunov-Type Central Schemes for Hyperbolic Problems: Further Development, Adaptation, and Applications
双曲问题的 Godunov 型中心方案:进一步发展、适应和应用
- 批准号:
0310585 - 财政年份:2003
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
- 批准号:
0196439 - 财政年份:2001
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
- 批准号:
0073631 - 财政年份:2000
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
相似国自然基金
强壮前沟藻共生细菌降解膦酸酯产生促藻效应的分子机制
- 批准号:42306167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高效率强壮消息鉴别码的分析与设计
- 批准号:61202422
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
- 批准号:61271414
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
半定松弛与非凸二次约束二次规划研究
- 批准号:11271243
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
民航客运网络收益管理若干问题的研究
- 批准号:60776817
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:联合基金项目
相似海外基金
Development of an Efficient, Parameter Uniform and Robust Fluid Solver in Porous Media with Complex Geometries
复杂几何形状多孔介质中高效、参数均匀且鲁棒的流体求解器的开发
- 批准号:
2309557 - 财政年份:2023
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
$ 21.42万 - 项目类别:
A robust, low-cost platform for EM connectomics
强大、低成本的 EM 连接组学平台
- 批准号:
10273540 - 财政年份:2021
- 资助金额:
$ 21.42万 - 项目类别:
Robust and efficient statistical inference methods for genomics
稳健且高效的基因组学统计推断方法
- 批准号:
10308395 - 财政年份:2019
- 资助金额:
$ 21.42万 - 项目类别:
Robust and efficient statistical inference methods for genomics
稳健且高效的基因组学统计推断方法
- 批准号:
10526429 - 财政年份:2019
- 资助金额:
$ 21.42万 - 项目类别: