New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis

新的高分辨率半离散中心方案:推导、应用和局部误差分析

基本信息

项目摘要

Central schemes may serve as universal finite-difference methodsfor numerically solving hyperbolic conservation laws, Hamilton-Jacobiequations and closely related convection-diffusion equations. Suchschemes are not tied to the specific eigen-structure of the problem,and hence can be implemented in a straightforward manner as black-boxsolvers for a wide variety of nonlinear equations governing thespontaneous evolution of large gradient phenomena. The first-order Lax-Friedrichs scheme is the forerunner for suchcentral schemes. The second-order Nessyahu-Tadmor scheme offers high resolution while retaining the simplicity of Riemann-solver-free approach. In the convective regime the improved resolution of the Nessyahu-Tadmor scheme and its generalizations is achieved by using high-order piecewise polynomial reconstructions and high-order quadrature formulas for computing the flux integrals. At the same time, this family of staggered central schemes suffers from excessivenumerical viscosity when a sufficiently small time step is enforced,e.g., due to the presence of (degenerate) diffusive term.Recently Kurganov and Tadmor introduced a new family of centralschemes, which retain the simplicity of staggered central schemes,yet they enjoy a smaller numerical viscosity. In particular, theseschemes admit a simple semi-discrete formulation. This project aims to develop new, minimally dissipative fully- and semi-discrete central schemes for conservation laws. The main ideas behind the construction of these new schemes is the use of more precise information of the localpropagation speed, and realizing the (non-smooth part of the) approximatesolution in terms of its cell averages integrated over the nonsymmetric Riemann fans of varying size.Hyperbolic conservation laws, Hamilton-Jacobi equations and convection-diffusion equations are of great practical importance. They govern avariety of physical phenomena that appear in fluid mechanics, gasdynamics, magnetohydrodynamics, astrophysics, groundwater flow,meteorology, semiconductors, reactive flows, two-phase flow in oilreservoirs, non-Newtonian flows, front propagation and several otherareas. Financial modeling, traffic flow, differential games, optimalcontrol and image enhancement are among the most recent applicationsof the above models.Genuinely multidimensional high-resolution semi-discrete central schemes provide a rather simple and universal method for solving these problems. At the same time, the computationalefficiency of central schemes is extremely high. For example, recent numerical experiments in three-dimensional magnetohydrodynamics demonstrate that using central schemes allows to achieve the desired resolution about 25 times faster in comparison with other methods. In general, the advantage of the new semi-discrete central schemes over alternative upwind methods is particularly amplified when they are used to solve complicated multidimensional systems arising in practice.The proposed schemes will be also applied to such important problemsas compressible and incompressible Euler and Navier-Stokes equations,multi-phase model of geometric optics, multicomponent flow andcompressible bubbles models, moving boundaries problems, shockreflection problem for the unsteady transonic small disturbanceequation and others.
中央方案可以用作通用有限差异方法,用于求解双曲线保护法,汉密尔顿 - 雅各布赛和密切相关的对流扩散方程。这些策略与问题的特定特征结构无关,因此可以直接地作为黑盒溶剂来实施,用于用于大量大梯度现象的各种非线性方程。一阶宽松液体方案是该中心方案的先驱。二阶Nessyahu-tadmor方案提供了高分辨率,同时保留了Riemann-Solver-Solver方法的简单性。在对流方案中,通过使用高阶分段多项式重建和高阶正交公式来计算磁通积分,可以改善Nessyahu-tadmor方案的分辨率及其概括。同时,当实施足够小的时间步长时,这种交错的中央计划的粘度过多,例如,由于存在(简并)差异术语,kurganov和tadmor介绍了一个新的中心策略家族,该家族退休了,这是一个新家族交错的中央计划的简单性,但它们的数值粘度较小。尤其是,这些策略允许一种简单的半污染公式。该项目旨在为保护法制定新的,最小化的全面耗散和半混凝土中央计划。这些新方案的构建背后的主要思想是使用局部传播速度的更精确的信息,并根据其细胞平均值(非对称的Riemann粉丝都具有不同大小的不同对称的Riemann粉丝,实现了(非平滑的部分)近似值。双曲线保护法,汉密尔顿 - 雅各比方程和对流扩散方程非常重要。它们控制着在流体力学,煤气动力学,磁动力学,天体物理学,地下水流量,气象学,半导体,反应性流动,反应性流动,非耐加工的两相流动,非牛顿顿流动,非牛顿流动,正面传播和几个其他因素中的宣誓体现象的贪婪。财务建模,交通流量,差异游戏,OptimalControl和图像增强是上述模型的最新应用之一。基础上多维的高分辨率半交流中央方案为解决这些问题提供了一种相当简单的通用方法。同时,中央方案的计算效率极高。例如,在三维磁性水力动力学中的最新数值实验表明,与其他方法相比,使用中央方案可以实现所需的分辨率约25倍。通常,在实践中出现的复杂的多维系统时,新的半分化中央方案比替代上风的方法的优势特别放大。所提出的方案也将应用于此类重要问题,可压缩和不可压缩的Euler和Navier -Stokes方程,几何光学的多相模型,多组分流量和可覆盖的气泡模型,移动边界问题,不稳定的跨性别小型干扰等方面的冲击反射问题等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kurganov其他文献

Alexander Kurganov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kurganov', 18)}}的其他基金

Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
  • 批准号:
    1818666
  • 财政年份:
    2018
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521009
  • 财政年份:
    2015
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerical methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
  • 批准号:
    1216957
  • 财政年份:
    2012
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
  • 批准号:
    1115718
  • 财政年份:
    2011
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes
基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发
  • 批准号:
    0610430
  • 财政年份:
    2006
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Godunov-Type Central Schemes for Hyperbolic Problems: Further Development, Adaptation, and Applications
双曲问题的 Godunov 型中心方案:进一步发展、适应和应用
  • 批准号:
    0310585
  • 财政年份:
    2003
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0196439
  • 财政年份:
    2001
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant

相似国自然基金

蛋白质降解决定因子的生物信息学筛选及其耐药突变的多组学分析研究
  • 批准号:
    32300528
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
  • 批准号:
    82371986
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
  • 批准号:
    32371621
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
计算机辅助的协作问题解决中情感-社交-认知建模分析与引导促进
  • 批准号:
    62377027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于MOFs材料解决钙钛矿太阳电池中铅泄漏问题的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

BRAIN CONNECTS: Multi-beam transmission electron microscopy of iteratively milled semi-thick tissue sections
大脑连接:迭代研磨半厚组织切片的多束透射电子显微镜
  • 批准号:
    10669305
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
Development of ultra-high resolution neutron imaging by quasi-direct detection using BGaN detector
利用 BGaN 探测器准直接探测开发超高分辨率中子成像
  • 批准号:
    23H00099
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Spatial and temporal super-resolution method for revealing quantum cooperative processes in semiconductor nanostructures
揭示半导体纳米结构中量子协同过程的时空超分辨率方法
  • 批准号:
    22H01990
  • 财政年份:
    2022
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Myc Transcription Factor Inhibitor Design: Integrating Atomic and Mesoscale with Semi-Supervised Generative Deep Learning Models
Myc 转录因子抑制剂设计:将原子和中尺度与半监督生成深度学习模型相结合
  • 批准号:
    10463080
  • 财政年份:
    2022
  • 资助金额:
    $ 6.5万
  • 项目类别:
A Novel Semi-autonomous Surgeon-in-the-loop in situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries
一种新型半自主外科医生在环原位机器人生物打印系统,用于体积肌肉丢失损伤的功能和美容恢复
  • 批准号:
    10473273
  • 财政年份:
    2022
  • 资助金额:
    $ 6.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了