Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs

合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发

基本信息

  • 批准号:
    1115718
  • 负责人:
  • 金额:
    $ 11.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-10-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

The project is aimed at developing highly accurate, efficient and robust numerical methods for systems of nonlinear time-dependent PDEs, with particular reference to multidimensional hyperbolic systems of conservation/balance laws and related problems. The principal part of the proposed research will be focused on the development of new finite-volume methods that will provide an improved resolution of linear contact waves and incorporate new techniques for solving problems involving complicated nonlinear wave phenomena and blowing up/spiky solutions. The proposed methods will be applied to a variety of nonlinear problems, among which are systems of gas dynamics, nonlinear elasticity and acoustics systems, modern traffic flow models, several chemotaxis and bioconvection models, and others. These problems will be studied in the most challenging cases of high space dimensions, complex geometries and moving interfaces. For each problem, a high-resolution finite-volume scheme will be systematically derived in a way that the main properties satisfied by the underlying system of PDEs will be also satisfied on the discrete level. One of the key features of the new schemes will be their nonlinear stability, which will be ensured by ability of the scheme to preserve positivity of such physical quantities as density. To achieve this goal, several high-order positivity preserving techniques will be explored.Besides providing the examples that corroborate the analytical approach, the foregoing applications are of a substantial independent value for a broad class of problems arising in today's science including geophysics, meteorology, astrophysics, semiconductors, traffic flows, image processing, financial and biological modeling and many other areas. Development of modern high-resolution finite-volume methods as well as of supplementary techniques is essential for solving many practically important problems, some of which are currently out of reach because the existing numerical methods are either inefficient/inaccurate or not applicable at all.
该项目旨在为非线性瞬态偏微分方程系统开发高精度、高效且稳健的数值方法,特别是守恒定律/平衡律的多维双曲系统及相关问题。拟议研究的主要部分将集中于开发新的有限体积方法,该方法将提高线性接触波的分辨率,并结合新技术来解决涉及复杂非线性波现象和爆炸/尖峰解决方案的问题。所提出的方法将应用于各种非线性问题,其中包括气体动力学系统、非线性弹性和声学系统、现代交通流模型、多种趋化性和生物对流模型等。这些问题将在高空间维度、复杂几何形状和移动界面等最具挑战性的情况下进行研究。对于每个问题,都将系统地导出高分辨率有限体积方案,使得偏微分方程底层系统所满足的主要属性在离散级别上也得到满足。新方案的关键特征之一是它们的非线性稳定性,这将通过该方案保持密度等物理量的正性的能力来保证。为了实现这一目标,将探索几种高阶正性保持技术。除了提供证实分析方法的示例之外,上述应用对于当今科学中出现的广泛问题(包括地球物理学、气象学、天体物理学、半导体、交通流、图像处理、金融和生物建模以及许多其他领域。现代高分辨率有限体积方法以及补充技术的发展对于解决许多实际重要问题至关重要,其中一些问题目前无法实现,因为现有的数值方法要么效率低下/不准确,要么根本不适用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kurganov其他文献

Alexander Kurganov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kurganov', 18)}}的其他基金

Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
  • 批准号:
    1818666
  • 财政年份:
    2018
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521009
  • 财政年份:
    2015
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerical methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
  • 批准号:
    1216957
  • 财政年份:
    2012
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes
基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发
  • 批准号:
    0610430
  • 财政年份:
    2006
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Godunov-Type Central Schemes for Hyperbolic Problems: Further Development, Adaptation, and Applications
双曲问题的 Godunov 型中心方案:进一步发展、适应和应用
  • 批准号:
    0310585
  • 财政年份:
    2003
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0196439
  • 财政年份:
    2001
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0073631
  • 财政年份:
    2000
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant

相似国自然基金

农业绿色发展背景下水稻规模户“双减”行为及干预策略研究:基于纵向协作视角
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
在线协作学习中群体认知发展机制研究:计算建模、分析反馈及教学干预
  • 批准号:
    62177041
  • 批准年份:
    2021
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
面向人机协作任务规划的认知发展与学习方法研究
  • 批准号:
    61906203
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
模糊环境下面向可持续发展的应急组织指派与协作优化策略研究
  • 批准号:
    71904021
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
桥头堡战略目标下大西南区际产业协作的路径、对策与绩效评价研究
  • 批准号:
    71263002
  • 批准年份:
    2012
  • 资助金额:
    35.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331437
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337028
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337027
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331438
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了