Massively Scalable Quantum Entanglement and Quantum Processing in the Optical Frequency Comb

光频梳中的大规模可扩展量子纠缠和量子处理

基本信息

  • 批准号:
    1206029
  • 负责人:
  • 金额:
    $ 54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Quantum computing promises exponential speedups over classical computing for specific but important tasks, such as data encryption and the simulation of quantum physics. However, the practical implementation of quantum computing faces daunting challenges: the need for scalability of "Qbit" (here, "Qmode") registers and the need to circumvent decoherence. This project from Prof. Pfister at the University of Virginia (UVa) aims at implementing large-scale entanglement in the periodic emission spectrum of an optical parametric oscillator (OPO), a.k.a. the "quantum optical frequency comb" (QOFC). It is based on the recent realization by Pfister's group of high-quality entanglement in a world-record 60 eigenmodes ("Qmodes") of the QOFC of a single OPO, into 15 sets of 4 Qmodes, each set being in a square cluster state. This successful experiment was the core of the project supported by an NSF award entitled "One-way quantum computing in the optical frequency comb." The objective of the current project is to build on this success and forge ahead toward highly scalable quantum information, along two lines of effort. On the one hand, we seek to generate record-size linear, square-grid, and cubic-lattice cluster states, which enable universal quantum computation. On the other hand, the group is striving to implement the quantum technologies needed for quantum processing in the QOFC. This includes: (i) developing low-loss, highly dispersive optical elements to separate Qmodes, (ii) implementing a network of balanced homodyne detection with high-efficiency PIN photodiodes using integrated optics, and (iii) performing high-efficiency nonGaussian measurements by way of photon-number-resolved detection, which has recently been implemented in Pfister's group at UVa thanks to a collaboration with Sae Woo Nam at NIST and Aaron Miller at Albion College, funded by an NSF MRI award entitled "Development of a photon-number-resolving detector system for universal quantum computing." This ambitious program is tantamount to creating a bona fide quantum computer over continuous variables, and studying quantum information in this context.The broader impacts of this work comprise an active research contribution to the UVa physics graduate and undergraduate programs. One recent undergraduate student was a former Goldwater Scholar who just joined the physics graduate program at Harvard, was a finalist of the 2011 LeRoy Apker Award of the American Physical Society, based on a paper he published with Prof. Pfister. Also stemming from this research, an advanced graduate course "Quantum Optics and Quantum Information" is now taught by the PI on a regular basis. On the interdisciplinary front, this research has spawned worldwide collaborative efforts. Finally, it is important to point out that quantum computing research has stakes in fundamental physics, as well as Defense and National Security: Shor's algorithm for factoring integers exponentially faster would defeat the widely-used RSA encryption protocol. Another direct application of a universal quantum processor of elementary size would be the modeling of presently intractable quantum problems in chemistry, materials science, and condensed-matter physics. Finally, the realization of a scalable quantum register offers possibilities for fundamental tests of quantum mechanics in the regime of mesoscopic entanglement and Schrödinger cats, where theoretical predictions become intractable. As quantum information comes of age, one can thus expect deeply significant scientific discoveries in all fields of the natural sciences.
量子计算承诺,对于特定但重要的任务,例如数据加密和量子物理的模拟,可以超过经典计算的指数加速。但是,量子计算的实际实施面临着令人生畏的挑战:“ QBIT”(此处,“ Qmode”)寄存器的可伸缩性的需求以及避免逆转的需求。该项目来自弗吉尼亚大学(UVA)的Pfister教授(UVA),旨在在光学参数振荡器(OPO)的周期性发射光谱中实施大规模的纠缠,A.K.A.“量子光学频率梳子”(QOFC)。它基于Pfister在单个OPO的QOFC的世界纪录60本特征模中(“ Qmodes”)中Pfister的高质量纠缠群体的最新认识,分为15组4个Qmodes,每个Qmodes都处于正方形群集状态。该成功的实验是该项目的核心,该项目由NSF奖励,标题为“光频率组合中的单向量子计算”。当前项目的目的是基于这一成功,并努力朝着高度可扩展的量子信息努力。一方面,我们试图生成记录尺寸的线性,方格和立方晶体群集状态,从而实现通用量子计算。另一方面,该小组正在努力实施QOFC中量子处理所需的量子技术。这包括:(i)使用集成光学器件使用高效的同性恋检测来实施高效的同伴检测网络,并使用集成光学的光电二极管实施高效的同伴检测网络,以及(iii)进行高效的nongaussian测量值,以光含量的测量与近来的uveStor and Off uver nemotion noke nongaussian,在pftection中实现了高效的测量值,该测量值是在pftection potection ftection,该公司的近来在pftection上进行了高效,以实现的效果,该效率高效率。 NAM在Albion College的NIST和Aaron Miller,由NSF MRI奖资助,名为“开发用于通用量子计算的光子数字探测器系统”。这个雄心勃勃的计划是在连续变量上创建真正的量子计算机,并在这种情况下研究量子信息。这项工作的更广泛影响完成了对UVA物理学毕业生和本科课程的积极研究贡献。一位最近的本科生是一位前金水学者,他刚刚加入了哈佛大学的物理学研究生课程,他是2011年美国物理学会的2011年勒罗伊·阿普克奖的决赛,他与普菲斯特教授一起发表了一篇论文。同样是由于这项研究的原因,PI现在由PI定期教授高级研究生课程“量子光学和量子信息”。在跨学科的方面,这项研究催生了全球的合作努力。最后,重要的是要指出,量子计算研究在基本物理学以及国防和国家安全方面都有股份:Shor的算法用于整数的考虑,将整数的计算更快地击败了广泛使用的RSA加密协议。基本大小的通用量子处理器的另一个直接应用是,在化学,材料科学和凝结物理学中目前棘手的量子问题的建模。最后,实现可扩展的量子寄存器为介质纠缠和施罗丁猫制度的量子力学基础测试提供了可能的特征,理论上的预测变得棘手。随着量子信息的发展,人们可以期望在自然科学的所有领域都有深刻的科学发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olivier Pfister其他文献

Experimental Generation of Cluster-state Entanglement by Phase Modulation of the Quantum Optical Frequency Comb
量子光频梳相位调制簇态纠缠的实验生成
Spatiotemporal graph states from a single optical parametric oscillator
来自单个光参量振荡器的时空图状态
  • DOI:
    10.1103/physreva.101.043832
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Rongguo Yang;Jing Zhang;Israel Klich;Carlos González-Arciniegas;Olivier Pfister
  • 通讯作者:
    Olivier Pfister
Universal quantum frequency comb measurements by spectral mode-matching
通过光谱模式匹配进行通用量子频率梳测量
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Dioum;Virginia d'Auria;A. Zavatta;Olivier Pfister;G. Patera
  • 通讯作者:
    G. Patera
Qubits without qubits
没有量子位的量子位
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Olivier Pfister
  • 通讯作者:
    Olivier Pfister
A new method for locking the signal-field phase difference in a type-II optical parametric oscillator above threshold.
一种将 II 型光参量振荡器中的信号场相位差锁定在阈值以上的新方法。
  • DOI:
    10.1364/oe.18.027858
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    M. Pysher;Y. Miwa;R. Shahrokhshahi;Daruo Xie;Olivier Pfister
  • 通讯作者:
    Olivier Pfister

Olivier Pfister的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olivier Pfister', 18)}}的其他基金

Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
  • 批准号:
    2219672
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
NSF-BSF: The Phase-Modulated Quantum Optical Frequency Comb: A Simple Platform for One-Way Quantum Computing
NSF-BSF:相位调制量子光频梳:单向量子计算的简单平台
  • 批准号:
    2112867
  • 财政年份:
    2021
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Quantum mux/demux: the quantum optical frequency comb as a scalable quantum encoding resource
RAISE-EQuIP:量子复用/解复用:量子光学频率梳作为可扩展的量子编码资源
  • 批准号:
    1842641
  • 财政年份:
    2018
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
NSF-BSF: Squeezing the Optical Frequency Comb: Applications to Quantum Computing and Quantum Measurement
NSF-BSF:挤压光频梳:在量子计算和量子测量中的应用
  • 批准号:
    1820882
  • 财政年份:
    2018
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Quantum Interferometry with Photon-Subtracted Twin Beams
光子相减双光束量子干涉测量
  • 批准号:
    1708023
  • 财政年份:
    2017
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Quantum Computing and Quantum Simulation in the Optical Frequency Comb
光频梳中的量子计算与量子模拟
  • 批准号:
    1521083
  • 财政年份:
    2015
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
MRI-R2 Consortium: Development of a Photon-Number-Resolving Detector System for Universal Quantum Computing
MRI-R2 联盟:开发用于通用量子计算的光子数分辨探测器系统
  • 批准号:
    0960047
  • 财政年份:
    2010
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
One-Way Quantum Computing in the Optical Frequency Comb
光频梳中的单向量子计算
  • 批准号:
    0855632
  • 财政年份:
    2009
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Multipartite Entanglement, Multimode Squeezing, and Non-Gaussian Light from Quantum Cascades and Concurrences
量子级联和并发中的多部分纠缠、多模压缩和非高斯光
  • 批准号:
    0555522
  • 财政年份:
    2006
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Quantum: Ultrastable heterodyne quantum information
量子:超稳定外差量子信息
  • 批准号:
    0622100
  • 财政年份:
    2006
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant

相似国自然基金

基于光-原子协同操控的可扩展性量子精密测量
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    291 万元
  • 项目类别:
基于光—原子协同操控的可扩展性量子精密测量
  • 批准号:
    12234014
  • 批准年份:
    2022
  • 资助金额:
    291.00 万元
  • 项目类别:
    重点项目
量子马尔可夫模型上的符号验证方法及其扩展研究
  • 批准号:
    12271172
  • 批准年份:
    2022
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
量子马尔可夫模型上的符号验证方法及其扩展研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向可扩展量子比特调控的三维硅基光电混合集成芯片模型与关键技术研究
  • 批准号:
    62274179
  • 批准年份:
    2022
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Studentship
SPARQ(s) - Scalable, Precise, And Reliable positioning of color centers for Quantum computing and simulation
SPARQ(s) - 用于量子计算和模拟的可扩展、精确且可靠的色心定位
  • 批准号:
    10078083
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Collaborative R&D
CAREER: Enabling Scalable and Resilient Quantum Computer Architectures through Synergistic Hardware-Software Co-Design
职业:通过协同硬件软件协同设计实现可扩展且有弹性的量子计算机架构
  • 批准号:
    2340267
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
LYRA : A Modular path towards Industrialised and Scalable Quantum Networking
LYRA:通往工业化和可扩展量子网络的模块化道路
  • 批准号:
    10085813
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
    Small Business Research Initiative
Scalable semiconductor quantum processor with flip chip bonding technology
采用倒装芯片接合技术的可扩展半导体量子处理器
  • 批准号:
    IM230100396
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
    Mid-Career Industry Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了