RAISE-EQuIP: Quantum mux/demux: the quantum optical frequency comb as a scalable quantum encoding resource

RAISE-EQuIP:量子复用/解复用:量子光学频率梳作为可扩展的量子编码资源

基本信息

  • 批准号:
    1842641
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

RAISE-EQuIP:Quantum Mux/Demux: The Quantum Optical Frequency Comb as a Scalable Quantum Encoding Resource Quantum information and quantum computing are emerging fields that have the potential to revolutionize various areas in science and technology. As first foreseen by Richard Feynman, quantum computers will enable calculations at currently unattainable scales and will bring unprecedented advances over classical computers. Examples include calculations of large biological molecules for revolutionary drug discovery, solving complex quantum mechanical systems, and factoring integers at a speed exponentially faster than classical computer to defeat current standard encryption methods. Quantum information is also fundamentally distinct from classical information. It cannot be cloned or hacked and therefore brings new power for cryptography, such as the method of quantum key distribution to create secure communications channels. The realization of practical systems capable of quantum computing and information is an extraordinary difficult task but will have profound impacts on national security and our society. To date, two primary challenges have been identified in making quantum technology a reality: achieving scalability and circumventing decoherence. At this juncture, many proof-of principle results have been experimentally demonstrated to address either decoherence (trapped-ion, superconducting, and cold atom qubits), or the scalability problem (field qumodes), but both requirements have not been met simultaneously yet. This project will address both of these challenges by a joint interdisciplinary effort between the Electrical and Computer Engineering and the Physics Departments at University of Virginia by ways of scalable integrated quantum photonics.The aim of this project is to marry scalable integrated photonics with quantum information and quantum computation over continuous variables in order to encode quantum information over the quantum optical frequency comb (QOFC). Such technology will empower unconditional quantum protocols such as quantum communication, quantum entanglement distillation, and quantum simulation. With NSF support, the quantum optics group at the University of Virginia has been pioneering the implementation of QOFC in optical parametric oscillator and has achieved record-levels of multipartite entanglements (60 qumodes). Integrated microresonator-based optical frequency combs, heterogeneous photonic integration and near unity quantum efficiency photodiodes have been in the focus of research in the micro-photonics, optoelectronic and photonics device groups at UVA for many years. The project aims to combine these efforts and create a unique integrated device on a chip with multimode quantum emitter, qumodes processing and detection. Such a realization enables numerous quantum applications on a chip, including massively scalable cluster entanglement, scalable deterministic quantum processing, quantum secret sharing over QOFC, and quantum mode sorting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
RAISE-EQuIP:量子复用/解复用:量子光频梳作为可扩展的量子编码资源 量子信息和量子计算是新兴领域,有可能彻底改变科学技术的各个领域。正如理查德·费曼 (Richard Feynman) 首次预见的那样,量子计算机将实现目前无法达到的规模计算,并将带来相对于经典计算机前所未有的进步。例子包括用于革命性药物发现的大型生物分子的计算、解决复杂的量子力学系统以及以比经典计算机快指数的速度分解整数以击败当前的标准加密方法。量子信息也与经典信息有着根本的区别。它无法被克隆或黑客攻击,因此为密码学带来了新的力量,例如用于创建安全通信通道的量子密钥分发方法。实现具有量子计算和信息能力的实用系统是一项非常艰巨的任务,但将对国家安全和社会产生深远影响。迄今为止,在使量子技术成为现实的过程中,已经确定了两个主要挑战:实现可扩展性和规避退相干。目前,许多原理证明结果已通过实验证明可以解决退相干(俘获离子、超导和冷原子量子位)或可扩展性问题(场量子模式),但这两个要求尚未同时满足。该项目将通过弗吉尼亚大学电气和计算机工程以及物理系之间的跨学科联合努力,通过可扩展的集成量子光子学来解决这两个挑战。该项目的目的是将可扩展的集成光子学与量子信息结合起来对连续变量进行量子计算,以便通过量子光学频率梳(QOFC)对量子信息进行编码。此类技术将为无条件量子协议提供支持,例如量子通信、量子纠缠蒸馏和量子模拟。在 NSF 的支持下,弗吉尼亚大学的量子光学小组率先在光参量振荡器中实施 QOFC,并实现了多部分纠缠(60 量子模)的创纪录水平。基于集成微谐振器的光学频率梳、异质光子集成和接近单位量子效率的光电二极管多年来一直是 UVA 微光子学、光电和光子器件组的研究重点。该项目旨在将这些努力结合起来,创建一种独特的芯片集成器件,具有多模量子发射器、量子模式处理和检测功能。这种实现使得芯片上的众多量子应用成为可能,包括大规模可扩展的簇纠缠、可扩展的确定性量子处理、QOFC 上的量子秘密共享以及量子模式排序。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resolution of 100 photons and quantum generation of unbiased random numbers
  • DOI:
    10.1038/s41566-022-01105-9
  • 发表时间:
    2022-12-19
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Eaton, Miller;Hossameldin, Amr;Pfister, Olivier
  • 通讯作者:
    Pfister, Olivier
Generation of squeezed quantum microcombs with silicon nitride integrated photonic circuits
利用氮化硅集成光子电路生成挤压量子微梳
  • DOI:
    10.1364/optica.498670
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Jahanbozorgi, Mandana;Yang, Zijiao;Sun, Shuman;Chen, Haoran;Liu, Ruxuan;Wang, Beichen;Yi, Xu
  • 通讯作者:
    Yi, Xu
Cluster States from Gaussian States: Essential Diagnostic Tools for Continuous-Variable One-Way Quantum Computing
高斯态的簇态:连续变量单向量子计算的基本诊断工具
  • DOI:
    10.1103/prxquantum.2.030343
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    González-Arciniegas, Carlos;Nussenzveig, Paulo;Martinelli, Marcelo;Pfister, Olivier
  • 通讯作者:
    Pfister, Olivier
Vernier frequency division with dual-microresonator solitons
  • DOI:
    10.1038/s41467-020-17843-9
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Beichen Wang;Zijiao Yang;Xiaobao Zhang;X. Yi
  • 通讯作者:
    Beichen Wang;Zijiao Yang;Xiaobao Zhang;X. Yi
Chaos-assisted two-octave-spanning microcombs
  • DOI:
    10.1038/s41467-020-15914-5
  • 发表时间:
    2020-05-11
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Chen, Hao-Jing;Ji, Qing-Xin;Xiao, Yun-Feng
  • 通讯作者:
    Xiao, Yun-Feng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olivier Pfister其他文献

Experimental Generation of Cluster-state Entanglement by Phase Modulation of the Quantum Optical Frequency Comb
量子光频梳相位调制簇态纠缠的实验生成
Spatiotemporal graph states from a single optical parametric oscillator
来自单个光参量振荡器的时空图状态
  • DOI:
    10.1103/physreva.101.043832
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Rongguo Yang;Jing Zhang;Israel Klich;Carlos González-Arciniegas;Olivier Pfister
  • 通讯作者:
    Olivier Pfister
Universal quantum frequency comb measurements by spectral mode-matching
通过光谱模式匹配进行通用量子频率梳测量
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Dioum;Virginia d'Auria;A. Zavatta;Olivier Pfister;G. Patera
  • 通讯作者:
    G. Patera
Qubits without qubits
没有量子位的量子位
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Olivier Pfister
  • 通讯作者:
    Olivier Pfister
A new method for locking the signal-field phase difference in a type-II optical parametric oscillator above threshold.
一种将 II 型光参量振荡器中的信号场相位差锁定在阈值以上的新方法。
  • DOI:
    10.1364/oe.18.027858
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    M. Pysher;Y. Miwa;R. Shahrokhshahi;Daruo Xie;Olivier Pfister
  • 通讯作者:
    Olivier Pfister

Olivier Pfister的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olivier Pfister', 18)}}的其他基金

Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
  • 批准号:
    2219672
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF-BSF: The Phase-Modulated Quantum Optical Frequency Comb: A Simple Platform for One-Way Quantum Computing
NSF-BSF:相位调制量子光频梳:单向量子计算的简单平台
  • 批准号:
    2112867
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF-BSF: Squeezing the Optical Frequency Comb: Applications to Quantum Computing and Quantum Measurement
NSF-BSF:挤压光频梳:在量子计算和量子测量中的应用
  • 批准号:
    1820882
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Quantum Interferometry with Photon-Subtracted Twin Beams
光子相减双光束量子干涉测量
  • 批准号:
    1708023
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Quantum Computing and Quantum Simulation in the Optical Frequency Comb
光频梳中的量子计算与量子模拟
  • 批准号:
    1521083
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Massively Scalable Quantum Entanglement and Quantum Processing in the Optical Frequency Comb
光频梳中的大规模可扩展量子纠缠和量子处理
  • 批准号:
    1206029
  • 财政年份:
    2012
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
MRI-R2 Consortium: Development of a Photon-Number-Resolving Detector System for Universal Quantum Computing
MRI-R2 联盟:开发用于通用量子计算的光子数分辨探测器系统
  • 批准号:
    0960047
  • 财政年份:
    2010
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
One-Way Quantum Computing in the Optical Frequency Comb
光频梳中的单向量子计算
  • 批准号:
    0855632
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Multipartite Entanglement, Multimode Squeezing, and Non-Gaussian Light from Quantum Cascades and Concurrences
量子级联和并发中的多部分纠缠、多模压缩和非高斯光
  • 批准号:
    0555522
  • 财政年份:
    2006
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Quantum: Ultrastable heterodyne quantum information
量子:超稳定外差量子信息
  • 批准号:
    0622100
  • 财政年份:
    2006
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

热/振耦合下MicroLED巨量转移装备自稳定柔性连接机制研究
  • 批准号:
    52305597
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合多源多态误差传递的复杂装备公差均衡创成机理
  • 批准号:
    52305285
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
废弃混合塑料磁化裂解机理及装备开发
  • 批准号:
    52375501
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于消费级装备的不同高度单株立木实景三维建模方法
  • 批准号:
    32371867
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高压加氢装备橡胶密封氢致空穴萌生与演化行为及爆炸减压损伤机制
  • 批准号:
    52375211
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

RAISE-EQuIP: Chip-Scale Quantum Memories for Practical Quantum Communication Networks
RAISE-EQuIP:用于实用量子通信网络的芯片级量子存储器
  • 批准号:
    1842655
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Quantum repeater for long-distance quantum communication enabled by non-Gaussian cluster states on a scalable hybrid aluminum nitride and silicon nanophotonic platform
RAISE-EQuIP:用于长距离量子通信的量子中继器,通过可扩展的混合氮化铝和硅纳米光子平台上的非高斯簇态实现
  • 批准号:
    1842559
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Single-Chip, Wall-Plug Photon Pair Source and CMOS Quantum Systems on Chip
RAISE-EQuIP:单芯片、壁插式光子对源和 CMOS 量子片上系统
  • 批准号:
    1842692
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Integrated Higher-Dimensional Quantum Photonic Platform
RAISE-EQuIP:集成高维量子光子平台
  • 批准号:
    1842612
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: A high-speed, reconfigurable, fully integrated circuit platform for quantum photonic applications
RAISE-EQuIP:用于量子光子应用的高速、可重新配置、全集成电路平台
  • 批准号:
    1842691
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了