Quantum Computing and Quantum Simulation in the Optical Frequency Comb
光频梳中的量子计算与量子模拟
基本信息
- 批准号:1521083
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The quest for fully functional, universal quantum computing is an important scientific and societal goal. A working quantum computer would bring about revolutionary advances by enabling quantum calculations at currently unfathomable scales, as first proposed by Richard Feynman. An example would be that of large biological molecules, which could empower drug discovery in an unprecedented manner. Another important application for the quantum computer is provided by Shor's algorithm for factoring integers exponentially faster than a classical computer, which would provide a way to defeat the current standard encryption methods (such as RSA) and is hence of relevance to national security. The realization of quantum computing is an inordinately difficult task for which the ideal experimental platform is not yet known. The two daunting challenges that stand in the way of the realization of a practical quantum computer of nontrivial size are overcoming decoherence, i.e., making reliable quantum bits 'qubits' and achieving scalability, i.e., producing large numbers of individually addressable qubits. Competing approaches on a worldwide scale involve ions in electromagnetic traps, atoms in optical traps, superconducting circuits, artificial atoms such as quantum dots or engineered dopant-vacancy defects in diamond, and pure light. The last approach has been successfully developed, with NSF support, by the Quantum Fields and Quantum Information (QFQI) group at the University of Virginia. It builds on exploiting the density of spectral encoding available to braodband emitting lasers and, more precisely, optical parametric oscillators (OPO). This project addresses a unique, scalable implementation of quantum information and quantum computing in an ultracompact physical system: the quantum optical frequency comb defined by the resonant modes (qumodes) of a single OPO. With NSF support, the QFQI group initiated the idea and pioneered its implementation in the laboratory, demonstrating record-levels of multipartite entanglement (60 qumodes, the optical field analogs of qubits) and obtaining several theoretical results in collaboration with Nick Menicucci at the U. of Sydney. The project will expand this widely successful frequency-domain entanglement approach to the time domain, and use hybrid frequency-time entanglement in order to implement a universal quantum computer in a single OPO. This will require the first ever realization of a fully scalable two-dimensional square-grid-lattice cluster state, which will still take place in a single OPO, by combining frequency-domain and time-domain entanglement --- as frequency and time will effectively constitute each dimension of the square-grid lattice. Such a realization includes the possibility of quantum error encoding using the Gottesman-Kitaev-Preskill scheme, for which Menicucci recently proved the existence of a fault tolerance threshold.
寻求功能齐全、通用的量子计算是一个重要的科学和社会目标。正如理查德·费曼 (Richard Feynman) 首次提出的那样,一台工作的量子计算机将通过在目前深不可测的规模上实现量子计算来带来革命性的进步。一个例子是大型生物分子,它可以以前所未有的方式促进药物发现。量子计算机的另一个重要应用是 Shor 的整数因式分解算法,其速度比经典计算机快得多,这将提供一种击败当前标准加密方法(例如 RSA)的方法,因此与国家安全相关。 量子计算的实现是一项极其艰巨的任务,目前还不知道理想的实验平台。实现规模不小的实用量子计算机面临的两个艰巨挑战是克服退相干性,即制造可靠的量子位“量子位”和实现可扩展性,即产生大量可单独寻址的量子位。全球范围内的竞争方法涉及电磁陷阱中的离子、光陷阱中的原子、超导电路、量子点或金刚石中工程掺杂空位缺陷等人造原子以及纯光。在 NSF 的支持下,弗吉尼亚大学的量子场和量子信息 (QFQI) 小组成功开发了最后一种方法。它建立在利用宽带发射激光器(更准确地说,光参量振荡器(OPO))可用的光谱编码密度的基础上。该项目致力于在超紧凑物理系统中以独特、可扩展的方式实现量子信息和量子计算:由单个 OPO 的谐振模式 (qumode) 定义的量子光学频率梳。在 NSF 的支持下,QFQI 小组提出了这一想法并率先在实验室中实施,展示了创纪录水平的多部分纠缠(60 量子模,量子位的光场类似物),并与美国大学的 Nick Menicucci 合作获得了多项理论结果。悉尼的。 该项目将把这种广泛成功的频域纠缠方法扩展到时域,并使用混合频时纠缠,以便在单个 OPO 中实现通用量子计算机。这将需要首次实现完全可扩展的二维方格晶格簇状态,这仍将通过结合频域和时域纠缠在单个 OPO 中实现——因为频率和时间将发生变化。有效地构成方格晶格的每个维度。这种实现包括使用 Gottesman-Kitaev-Preskill 方案进行量子错误编码的可能性,Menicucci 最近证明了容错阈值的存在。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier Pfister其他文献
Experimental Generation of Cluster-state Entanglement by Phase Modulation of the Quantum Optical Frequency Comb
量子光频梳相位调制簇态纠缠的实验生成
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xuan;Chun;C. González;Avi Pe'er;Olivier Pfister - 通讯作者:
Olivier Pfister
Spatiotemporal graph states from a single optical parametric oscillator
来自单个光参量振荡器的时空图状态
- DOI:
10.1103/physreva.101.043832 - 发表时间:
2020 - 期刊:
- 影响因子:2.9
- 作者:
Rongguo Yang;Jing Zhang;Israel Klich;Carlos González-Arciniegas;Olivier Pfister - 通讯作者:
Olivier Pfister
Universal quantum frequency comb measurements by spectral mode-matching
通过光谱模式匹配进行通用量子频率梳测量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
B. Dioum;Virginia d'Auria;A. Zavatta;Olivier Pfister;G. Patera - 通讯作者:
G. Patera
A new method for locking the signal-field phase difference in a type-II optical parametric oscillator above threshold.
一种将 II 型光参量振荡器中的信号场相位差锁定在阈值以上的新方法。
- DOI:
10.1364/oe.18.027858 - 发表时间:
2010 - 期刊:
- 影响因子:3.8
- 作者:
M. Pysher;Y. Miwa;R. Shahrokhshahi;Daruo Xie;Olivier Pfister - 通讯作者:
Olivier Pfister
Olivier Pfister的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olivier Pfister', 18)}}的其他基金
Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
- 批准号:
2219672 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF-BSF: The Phase-Modulated Quantum Optical Frequency Comb: A Simple Platform for One-Way Quantum Computing
NSF-BSF:相位调制量子光频梳:单向量子计算的简单平台
- 批准号:
2112867 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RAISE-EQuIP: Quantum mux/demux: the quantum optical frequency comb as a scalable quantum encoding resource
RAISE-EQuIP:量子复用/解复用:量子光学频率梳作为可扩展的量子编码资源
- 批准号:
1842641 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF-BSF: Squeezing the Optical Frequency Comb: Applications to Quantum Computing and Quantum Measurement
NSF-BSF:挤压光频梳:在量子计算和量子测量中的应用
- 批准号:
1820882 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Quantum Interferometry with Photon-Subtracted Twin Beams
光子相减双光束量子干涉测量
- 批准号:
1708023 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Massively Scalable Quantum Entanglement and Quantum Processing in the Optical Frequency Comb
光频梳中的大规模可扩展量子纠缠和量子处理
- 批准号:
1206029 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
MRI-R2 Consortium: Development of a Photon-Number-Resolving Detector System for Universal Quantum Computing
MRI-R2 联盟:开发用于通用量子计算的光子数分辨探测器系统
- 批准号:
0960047 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
One-Way Quantum Computing in the Optical Frequency Comb
光频梳中的单向量子计算
- 批准号:
0855632 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Multipartite Entanglement, Multimode Squeezing, and Non-Gaussian Light from Quantum Cascades and Concurrences
量子级联和并发中的多部分纠缠、多模压缩和非高斯光
- 批准号:
0555522 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Quantum: Ultrastable heterodyne quantum information
量子:超稳定外差量子信息
- 批准号:
0622100 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
基于量子化学精度的蛋白-配体相互作用的理论计算模拟
- 批准号:22333006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
高性能低开销的量子计算模拟系统关键技术及算法研究
- 批准号:62372182
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于近期量子计算机硬件的量子化学模拟研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
无公度体系量子本征值问题的计算与局域特性模拟
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
囚禁离子量子经典混合系统上的量子计算与量子模拟实验研究
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
相似海外基金
SPARQ(s) - Scalable, Precise, And Reliable positioning of color centers for Quantum computing and simulation
SPARQ(s) - 用于量子计算和模拟的可扩展、精确且可靠的色心定位
- 批准号:
10078083 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Collaborative R&D
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Agile synthesizers for quantum computing, simulation and sensing
用于量子计算、模拟和传感的敏捷合成器
- 批准号:
LP200100082 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Linkage Projects
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
- 批准号:
10698836 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Understanding electronically non-adiabatic reactions in biomolecules with multiscale simulations
通过多尺度模拟了解生物分子中的电子非绝热反应
- 批准号:
10714663 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别: