An Experimental and Computational Study of the Radiative Thermal Conductivity of Upper Mantle Minerals and Rocks
上地幔矿物和岩石辐射热导率的实验和计算研究
基本信息
- 批准号:2148727
- 负责人:
- 金额:$ 50.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Earth is a dynamic planet — with earthquakes, volcanoes, mountain-building, and supply of life-essential compounds to the surface — because of forces arising from the transport of heat through its interior. Such transport occurs by three mechanisms. The first mechanism is advection: the upward motion of hot material and downward motion of cold material that make the planet active. The others represent “waste heat” that moves through Earth materials without necessarily contributing to planetary activity. One is conduction, the familiar experience of heat flowing from hot objects to cold objects in direct contact. This mechanism is well-studied. The third mechanism is transmission of heat by visible and infrared light, or radiative heat transfer. This latter mechanism has been largely neglected in geophysics. Here the team builds on their initial discovery that mineral grains can become dramatically more transparent at elevated temperatures. This allows for more radiative heat transfer. The researchers, thus, re-evaluate the role of radiative heat transfer in the Earth’s mantle. They systematically extend their experimental and computational test to the minerals that dominate the interior of the Earth. This project involves two important components. The first is measurements of the optical absorption properties of relevant minerals at elevated temperatures. The second is to use the measured optical absorption data to improve the mathematical models that describe radiative conductivity in the Earth. The project’s overarching goal is to assess the consequences of a more transparent mantle for global tectonic plate motions. The project support one graduate and several undergraduate students. Its outcomes, which include new techniques, methods, codes, and data products, are openly shared with the scientific community. The project results, technical and theoretical, have broad implications beyond Earth sciences in materials science and engineering. Thermal conduction represents inefficiency of the Earth’s convective heat engine. Indeed, if the sum of lattice and radiative thermal conductivity become large enough, convective vigor decreases. Consequently, a greater heat flow or lower viscosity becomes necessary to maintain dynamic motions. In the upper mantle, radiative thermal conductivity has largely been ignored. This is because the opacity of Fe-bearing mantle minerals is thought to be high enough to make radiative transport negligible. Yet, the team’s preliminary work has shown that the optical spectra of minerals collected at room temperature can be quite different from those collected at elevated temperatures. At room temperature, the most important optical absorption mechanism in many mantle minerals at visible wavelengths is intervalence charge transfer (IVCT). This mechanism involves pairs of Fe2+ and Fe3+ ions or Fe2+ and Ti4+ ions. Since it depends on electrons moving between orbitals of different ions, intuition suggests that elevated temperature should reduce the barrier to such hopping and increase the probability of absorption. But initial experimental results on model minerals have shown that the IVCT absorption fades with increasing temperature and is gone at the temperatures of Earth’s asthenosphere; this makes the minerals increasingly transparent to visible light. Here the researchers investigate the consequences of this discovery for geodynamics through two parallel and integrated efforts: (1) experimental work to characterize the optical spectra of key mantle minerals at elevated temperature; and (2) application of a flexible numerical code to model radiative transport in a multiphase medium - given measured spectral properties of the constituent phases - and to incorporate the resulting bulk radiative conductivity into geodynamic models of mantle convection. Their initial studies involved analogues for mantle minerals. The team now investigates actual mantle minerals. The goal is to gain a systematic understanding of mineral high-temperature optical spectra. The researchers study important (relatively transparent) mantle minerals such as olivine and garnet. In addition, they work with collaborators who grow thin films of nearly opaque minerals (spinels, orthopyroxene) that can be used for spectroscopy. These novel measurements call for upgrades to the laboratory centered around improved broadband detectors, a heating stage for the microscope, and environmental control to minimize mineral oxidation at high temperature. Although the researchers suspect that the temperature dependence of IVCT is the main effect in need of study, they also conduct some measurements at elevated pressure in a diamond-anvil cell to evaluate the effect of pressure on the phenomenon.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球是一个充满活力的星球,有地震、火山、造山活动,并且向地表提供生命必需的化合物,这是因为通过其内部的热量传输产生的力。这种传输通过三种机制发生。一种是平流:使地球活跃的热物质的向上运动和冷物质的向下运动,另一种是穿过地球物质的“废热”,不一定有助于行星活动。从直接接触的热物体到冷物体。第三种机制是通过可见光和红外光传递热量,或者说辐射传热,但在地球物理学中,该团队在他们最初发现矿物颗粒可以变得更加明显的基础上进行了研究。因此,研究人员系统地将其实验和计算测试扩展到了地幔内部的矿物。该项目涉及两个重要组成部分。第一个是测量相关矿物在高温下的光学吸收特性,第二个是利用测量到的光学吸收数据来改进描述地球辐射电导率的数学模型。该项目的总体目标是评估更透明的地幔对全球构造板块运动的影响,该项目支持一名研究生和几名本科生,其成果包括新技术、方法、代码和数据产品,并与其他人公开分享。科学界。该项目的技术和理论成果在材料科学和工程领域具有广泛的影响。事实上,如果晶格热导率和辐射热导率之和变得足够大,对流活力就会降低。在上地幔中,需要更大的热流或更低的粘度,这是因为辐射热导率被忽略了。含铁地幔矿物被认为足够高,可以忽略不计的辐射传输,然而,该团队的初步工作表明,在室温下收集的矿物的光谱可能与在高温下收集的矿物有很大不同。许多地幔矿物在可见光波长下最重要的光学吸收机制是间隔电荷转移(IVCT),该机制涉及成对的 Fe2+ 和 Fe3+ 离子或 Fe2+ 和 Ti4+ 离子,因为它取决于。电子在不同离子的轨道之间移动,直觉表明升高的温度应该会减少这种跳跃的势垒并增加吸收的可能性,但模型矿物的初步实验结果表明,IVCT 吸收随着温度的升高而减弱,并在一定温度下消失。研究人员通过两项并行综合的努力研究了这一发现对地球动力学的影响:(1)表征高温下关键地幔矿物的光谱;和(2)应用灵活的数字代码来模拟多相介质中的辐射传输(给定测量的组成相的光谱特性),并将所得的整体辐射电导率纳入地幔对流的地球动力学模型中。他们的初步研究涉及地幔矿物的类似物。该团队现在研究实际的地幔矿物,其目标是系统地了解矿物的高温光谱。研究人员研究了重要的(相对透明的)地幔矿物,例如橄榄石和矿物。此外,他们还与合作者合作,生产可用于光谱学的几乎不透明的矿物(尖晶石、斜方辉石)薄膜。这些新颖的测量需要以改进的宽带探测器(显微镜的加热台)为中心进行升级。尽管研究人员怀疑 IVCT 的温度依赖性是需要研究的主要影响,但他们还在金刚石砧室中在高压下进行了一些测量。评估压力对该现象的影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Rossman其他文献
George Rossman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Rossman', 18)}}的其他基金
Hydrous Components in Nominally Anhydrous Phases
标称无水相中的含水组分
- 批准号:
2149559 - 财政年份:2022
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
Light Element Incorporation in Nominally Anhydrous Minerals
名义无水矿物中的轻元素掺入
- 批准号:
1322082 - 财政年份:2014
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
Effects of Hydrogen on Kinetic Processes in Nominally Anhydrous Minerals
氢对标称无水矿物动力学过程的影响
- 批准号:
0947956 - 财政年份:2010
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
Acquisition of an Electron Microprobe for Geological and Materials Research at Caltech
加州理工学院购买用于地质和材料研究的电子显微探针
- 批准号:
0318518 - 财政年份:2004
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
Hydrous Components in the Nominally Anhydrous Minerals
名义无水矿物中的含水成分
- 批准号:
0337816 - 财政年份:2004
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
Hydrous Components in Nominally Anhydrous Crustal Minerals
名义无水地壳矿物中的含水成分
- 批准号:
0125767 - 财政年份:2001
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
Hydrous Components in Nominally Anhydrous Minerals
名义无水矿物中的含水成分
- 批准号:
9804871 - 财政年份:1998
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
Upgrading of Infrared Spectroscopic Instrumentation at the Mineral Spectroscopy Lab at the California Institute of Technology
加州理工学院矿物光谱实验室红外光谱仪器升级
- 批准号:
9725897 - 财政年份:1998
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
Computer Control and Data Processing Instrumentation for an Electron Microprobe, SEM and XRD Laboratory
用于电子显微探针、SEM 和 XRD 实验室的计算机控制和数据处理仪器
- 批准号:
9405438 - 财政年份:1994
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
"Water" in Normally Anhydrous Minerals
通常无水矿物中的“水”
- 批准号:
9218980 - 财政年份:1993
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
相似国自然基金
超网驱动的学习型进化计算多模态优化研究
- 批准号:62306225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习和相图计算耦合方法的γ′相强化型高熵高温合金的加速设计及其性能研究
- 批准号:52371007
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于深度学习计算重构的环境扰动免疫型马赛克片上光谱成像技术研究
- 批准号:62305250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的人脸多属性识别及其并行算法研究与探索
- 批准号:61902119
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
融合粒计算和轻量型卷积神经网络的表示学习方法研究
- 批准号:
- 批准年份:2019
- 资助金额:61 万元
- 项目类别:面上项目
相似海外基金
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Inferring multi-scale dynamics underlying behavior in aging C. elegans
推断衰老线虫行为背后的多尺度动力学
- 批准号:
10638631 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
- 批准号:
10696753 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Structure-based computational engineering of saCas9 PAM requirement
saCas9 PAM 要求的基于结构的计算工程
- 批准号:
10696610 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别: