Scalable and Automated Tuning of Spin-based Quantum Computer Architectures

基于自旋的量子计算机架构的可扩展和自动调整

基本信息

  • 批准号:
    2887634
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Scalable and Automated Tuning of Spin-based Quantum Computer ArchitecturesBrief description of the context of the research including potential impact: - Quantum computing is an emergent technology that has the potential to solve classically intractable problems using a new paradigm of computation. The basis for such computation uses the quantum states of a system to encode information, unlike the binary states of modern-day transistors (bits). Of the many candidate platforms for realising these quantum bits (qubits), spins confined in semiconductor structures are attractive for their long coherence times as well as small size and ease of integration with control electronics, giving them an edge in terms of scalability. The challenge lies in moving away from proof-of-concept devices (containing just a handful of qubits) to microchips that contain dozens of such qubits and beyond. This is currently hindered by device variability and noise associated with the host material, which, in the first case, makes device tuning very difficult, and in the second case, can lead to a reduction in the fidelity of quantum operations, especially if these noise sources have spatio-temporal correlations. If clever algorithms and protocols can be devised to, firstly, tune multiple devices efficiently, and secondly, compensate for noise in real-time, this would mark an enormous step forward in the scalability of spin qubit architectures. Aims and objectives:- The aim of this project is to explore machine learning methods capable of tuning and stabilizing spin qubits over large length-scales. In doing so, the hope is to inspire the development of spin qubit architectures that are most resilient to variability and noise. Until now, spin qubit architectures have been pioneered with a physics mindset, i.e. how spin qubits can most easily interact with one another and how they can be most easily addressed using magnetic and electric fields. The novelty of this project approach lies in the software and hardware co-design, which has previously not been considered at the device design stage. This will be an interdisciplinary effort, drawing on both experimental physics and software methodologies, such as accelerated Bayesian optimization methods and time series analysis - a new effort within spin-based quantum computing. Some milestones for this project would include the characterization of material disorder at the wafer scale, expansion of tuning algorithms beyond a handful of qubits, and new methods for compensating noise, as would be evidenced by an enhancement in the fidelity of quantum operations. Some material platforms that could be investigated include Ge/SiGe heterostructures, Si-MOS, and Si Fin-FET devices, with the goal to isolate the most promising candidate. EPSRC alignment:- This project falls within the EPSRC Quantum Technologies research area.Any companies or collaborators involved:- An existing collaboration with Katsaros Group at the Institute of Science and Technology Austria (ISTA) will be extended, from whom we will receive quantum devices on which our algorithms and experiments will be tested. In addition, devices could be sourced from the Quantum Coherence Laboratory at the University of Basel or the Quantum Technologies division at the IBM Research Laboratory in Zurich or Scappucci Lab at QuTech. Moreover, to characterize quantum devices on a wafer scale, we will reach out to the teams at IBM or at CEA-Leti in Grenoble to use their state-of-the-art cryo-prober system. Lastly, we will continue collaborations with groups at the University of Oxford from departments of Engineering Science as well as Statistics, who provide invaluable algorithmic input.
基于自旋的量子计算机架构的可扩展和自动调整简要描述了研究背景,包括潜在影响: - 量子计算是一种新兴技术,有潜力使用新的计算范式解决经典的棘手问题。此类计算的基础是使用系统的量子态来编码信息,这与现代晶体管(位)的二进制态不同。在实现这些量子位(qubit)的众多候选平台中,限制在半导体结构中的自旋因其长相干时间、小尺寸以及易于与控制电子设备集成而具有吸引力,从而在可扩展性方面具有优势。挑战在于从概念验证设备(仅包含少量量子位)转向包含数十个此类量子位及更多的微芯片。目前,这受到器件可变性和与主体材料相关的噪声的阻碍,在第一种情况下,这使得器件调谐非常困难,而在第二种情况下,可能会导致量子操作的保真度降低,特别是如果这些噪声来源具有时空相关性。如果可以设计出巧妙的算法和协议,首先可以有效地调整多个设备,其次可以实时补偿噪声,这将标志着自旋量子位架构的可扩展性向前迈出了一大步。目的和目标:该项目的目的是探索能够在大长度范围内调整和稳定自旋量子位的机器学习方法。这样做的目的是激发对可变性和噪声最具弹性的自旋量子位架构的开发。到目前为止,自旋量子位架构一直以物理思维方式开创,即自旋量子位如何最容易地相互交互以及如何使用磁场和电场最容易地解决它们。该项目方法的新颖之处在于软件和硬件协同设计,这是以前在设备设计阶段未考虑到的。这将是一项跨学科的工作,借鉴了实验物理学和软件方法,例如加速贝叶斯优化方法和时间序列分析——基于自旋的量子计算领域的一项新工作。该项目的一些里程碑包括晶圆级材料无序的表征、将调谐算法扩展到少数量子位之外,以及补偿噪声的新方法,量子操作保真度的增强将证明这一点。一些可以研究的材料平台包括 Ge/SiGe 异质结构、Si-MOS 和 Si Fin-FET 器件,目的是分离出最有希望的候选材料。 EPSRC 联盟:- 该项目属于 EPSRC 量子技术研究领域。参与的任何公司或合作者:- 与奥地利科学技术研究所 (ISTA) Katsaros Group 的现有合作将得到扩展,我们将从他们那里获得量子设备我们的算法和实验将在其上进行测试。此外,设备还可以来自巴塞尔大学的量子相干实验室、苏黎世 IBM 研究实验室的量子技术部门或 QuTech 的 Scappucci 实验室。此外,为了表征晶圆级量子器件,我们将联系 IBM 或格勒诺布尔 CEA-Leti 的团队,使用他们最先进的低温探针系统。最后,我们将继续与牛津大学工程科学系和统计学系的团队合作,他们提供了宝贵的算法输入。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Products Review
  • DOI:
    10.1177/216507996201000701
  • 发表时间:
    1962-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
  • 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
  • DOI:
    10.1016/j.techsoc.2023.102253
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
  • 通讯作者:
Digitization
References
Putrescine Dihydrochloride
  • DOI:
    10.15227/orgsyn.036.0069
  • 发表时间:
    1956-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

热化学非平衡下高马赫数超燃冲压发动机热力分析及其流道自动化设计
  • 批准号:
    52306006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
工业自动化与创新的产业外溢:理论与实证
  • 批准号:
    72302245
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向典型sponge类哈希函数的比特分析驱动的中间相遇自动化攻击研究
  • 批准号:
    62302250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单浆细胞筛选新技术的自动化抗体发现平台构建及工作机制研究
  • 批准号:
    32301266
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
码头自动化中的图论和组合优化问题
  • 批准号:
    12331014
  • 批准年份:
    2023
  • 资助金额:
    194 万元
  • 项目类别:
    重点项目

相似海外基金

CAREER: Mining Hints from Text Documents to Guide Automated Database Performance Tuning
职业:从文本文档中挖掘提示来指导自动数据库性能调优
  • 批准号:
    2239326
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
GOALI: Turnkey Model Predictive Control: automated design, model identification, tuning, and monitoring
GOALI:交钥匙模型预测控制:自动化设计、模型识别、调整和监控
  • 批准号:
    2138985
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Surrogate Based Automated Tuning of Microwave Devices and Systems
基于代理的微波设备和系统自动调谐
  • 批准号:
    RGPIN-2020-06853
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Surrogate Based Automated Tuning of Microwave Devices and Systems
基于代理的微波设备和系统自动调谐
  • 批准号:
    RGPIN-2020-06853
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Surrogate Based Automated Tuning of Microwave Devices and Systems
基于代理的微波设备和系统自动调谐
  • 批准号:
    RGPIN-2020-06853
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了