Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
基本信息
- 批准号:0906160
- 负责人:
- 金额:$ 15.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to the study of multi-dimensional conservation laws arising in fluid dynamics and related applications. In particular, the study focuses on the following topics from the theory of two-dimensional compressible isentropic Euler equations and related partial differential equations: (a) the steady and unsteady transonic flows past an obstacle, (b) a fluid dynamic approach for the Gauss-Codazzi equations of isometric embedding/immersion, (c) two-dimensional solutions with special data of the Euler equations, and (d) the two-dimensional problems arising in magnetohydrodynamics, elastodynamics, and radiation hydrodynamics. The goals of the research are: (a) developing novel analytic methods and numerical schemes to construct multi-dimensional solutions, (b) exploring global structure of solutions, (c) understanding long-time behavior, for example, evolution of singularities and stability, and (d) gaining insights into the multi-dimensional problems, in particular identifying the functional spaces of multi-dimensional solutions.The project is devoted to a mathematical study of some nonlinear partial differential equations governing the motion of compressible fluid flows and related applications. Compressible fluids are ubiquitous in nature, the most common examples being gases. Their study is crucial for understanding aerodynamics, atmospheric science, astrophysics, plasma physics, etc. While the one-dimensional problems are rather well understood, the general theory for the multi-dimensional case is mathematically underdeveloped. The project is to advance the mathematical understanding of the multi-dimensional equations of compressible flows. The aim of the project is to advance knowledge in this fundamental area of mathematics and mechanics, and to provide education and training to students in this important field.
该项目致力于研究流体动力和相关应用中产生的多维保护定律。特别是,该研究侧重于以下主题,该主题来自二维可压缩的等递质欧拉方程和相关的偏微分方程:(a)稳定且不稳定的跨性别者流过障碍物,(b)与等值范围/接触的eSuse(c)dimension(c)dimensions(c)的稳定动力学方法(c)在磁流失动力学,弹性动力学和辐射流体动力学中引起的二维问题。该研究的目标是:(a)开发新的分析方法和数值方案来构建多维解决方案,(b)探索解决方案的全球结构,(c)理解长期行为,例如,例如,奇异和稳定性的演变,以及(d)对多维问题的洞察力,尤其是确定了某种方法,以确定某种功能,以确定某种功能的功能。非线性部分微分方程,负责可压缩流体流动和相关应用的运动。可压缩的流体本质上是普遍存在的,最常见的例子是气体。他们的研究对于理解空气动力学,大气科学,天体物理学,血浆物理学等至关重要。虽然一维问题却相当理解,但多维案例的一般理论在数学上是欠发达的。该项目是为了提高对可压缩流的多维方程的数学理解。该项目的目的是提高数学和力学基本领域的知识,并向这个重要领域的学生提供教育和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dehua Wang其他文献
Local well-posedness and low Mach number limit to the compressible magnetohydrodynamic equations in critical spaces
临界空间中可压缩磁流体动力学方程的局部适定性和低马赫数限制
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1
- 作者:
Fucai Li;Yanmin Mu;Dehua Wang - 通讯作者:
Dehua Wang
Study on the photodetachment of H ion near a dielectric sphere
H离子在介电球附近的光脱离研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Qiang Chen;Dehua Wang - 通讯作者:
Dehua Wang
Born–Oppenheimer molecular dynamics simulations on structures of high-density and low-density water: a comparison of the SCAN meta-GGA and PBE GGA functionals
Born-Oppenheimer 对高密度和低密度水结构的分子动力学模拟:SCAN meta-GGA 和 PBE GGA 泛函的比较
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mengli Li;Lu Chen;Lirong Gui;Shuo Cao;Di Liu;Gang Zhao;Mingcui Ding;Jinliang Yan;Dehua Wang - 通讯作者:
Dehua Wang
Photodetachment electron flux of H- in combined electric and magntic field with arbitrary orientation
任意方向电场和磁场联合场中H-的光脱离电子通量
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.9
- 作者:
Dehua Wang - 通讯作者:
Dehua Wang
Vanishing Viscosity Limit to the Planar Rarefaction Wave for the Two-Dimensional Compressible Navier-Stokes Equations
二维可压缩纳维-斯托克斯方程平面稀疏波的消失粘度极限
- DOI:
10.1007/s00220-019-03580-8 - 发表时间:
2020 - 期刊:
- 影响因子:2.4
- 作者:
Lin-an Li;Dehua Wang;Yi Wang - 通讯作者:
Yi Wang
Dehua Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dehua Wang', 18)}}的其他基金
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
- 批准号:
1907519 - 财政年份:2019
- 资助金额:
$ 15.49万 - 项目类别:
Continuing Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
- 批准号:
1613213 - 财政年份:2016
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Free Boundary Problems and Applications, Spring 2014
免费边界问题和应用,2014 年春季
- 批准号:
1445629 - 财政年份:2015
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
- 批准号:
1312800 - 财政年份:2013
- 资助金额:
$ 15.49万 - 项目类别:
Continuing Grant
Analysis and Applications of Nonlinear Partial Differential Equations in Conservation Laws
守恒定律中非线性偏微分方程的分析与应用
- 批准号:
0604362 - 财政年份:2006
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244487 - 财政年份:2003
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
相似国自然基金
某些流体动力学方程与非线性色散方程的数学研究
- 批准号:11671047
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
喉部分切除术后声带张力修复对发声生理影响的实验研究
- 批准号:81500779
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
退化型和带奇异性非线性偏微分方程的微局部分析
- 批准号:11171261
- 批准年份:2011
- 资助金额:36.0 万元
- 项目类别:面上项目
非线性发展方程理论及其应用研究
- 批准号:10271108
- 批准年份:2002
- 资助金额:16.0 万元
- 项目类别:面上项目
微局部分析与中心流形理论在非线性偏微分方程中的应用
- 批准号:10071024
- 批准年份:2000
- 资助金额:9.5 万元
- 项目类别:面上项目
相似海外基金
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 15.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
- 批准号:
22K13939 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
DMS-EPSRC: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
EP/V051121/1 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Research Grant