DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
基本信息
- 批准号:2219384
- 负责人:
- 金额:$ 11.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award partners teams of US and UK mathematicians to use their combined expertise for the purpose of studying several challenging and longstanding mathematical phenomena in fluid dynamics, for example, the interaction of shock waves, the stability of vortex sheets, and the behavior of boundary layers as the viscosity vanishes. The project will also investigate questions involving the behavior of particle systems as the number of particles becomes infinite; the understanding of the collective behavior of these systems has applications to a variety of physical, biological, financial, and social systems involving many interacting agents. The award will provide opportunities for students to be involved in collaborative research and workshops to take place at various institutions in the US and the UK. This collaborative research project will develop innovative mathematical methods and techniques to study outstanding stability questions for nonlinear partial differential equations across the scales, including asymptotic, quantifying, and structural stability problems in hyperbolic conservation laws, kinetic equations, and related multiscale applications in fluid-particle (agent based) models. The research is focused mainly on the following four interrelated objectives: (1) Stability analysis of shock wave patterns of reflections/diffraction with focus on the shock reflection-diffraction problem in gas dynamics; (2) Stability analysis of vortex sheets, contact discontinuities, and other characteristic discontinuities; (3) Stability analysis of particle to continuum limits including the quantifying asymptotic/mean-field/large-time limits for pairwise interactions and particle limits for general interactions among multi-agent or many-particle systems; (4) Stability analysis of asymptotic limits with emphasis on the vanishing viscosity limit of solutions from multi-dimensional compressible viscous to inviscid flows with large initial data. The project will lead to both new understanding of these fundamental scientific issues and beneficial cross-fertilization with significant progress towards a nonlinear stability theory of nonlinear partial differential equations across multiscale applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖励合作伙伴团队是美国和英国数学家使用其组合专业知识来研究流体动力学中的几种具有挑战性和长期的数学现象的目的,例如,冲击波的相互作用,涡流纸的稳定性以及边界层的行为随着粘度而消失。该项目还将研究涉及粒子系统行为的问题,因为粒子的数量变得无限。对这些系统的集体行为的理解在涉及许多相互作用的代理的各种物理,生物,财务和社会系统上都有应用。该奖项将为学生提供合作研究和研讨会的机会,并在美国和英国的各个机构举行。 该协作研究项目将开发创新的数学方法和技术,以研究整个尺度上非线性偏微分方程的杰出稳定性问题,包括双曲线保护法,动力学方程,动力学方程以及相关的多构型应用程序中的流体疗法(基于代理)模型中的渐近,量化和结构稳定性问题。该研究主要集中在以下四个相互关联的目标上:(1)反射/衍射的冲击波模式的稳定性分析,重点是气体动力学中的冲击反射偏差问题; (2)涡流板,联系不连续性和其他特征性不连续性的稳定性分析; (3)粒子到连续限制的稳定性分析,包括用于成对相互作用的渐近/平均场/大时限和多粒子系统之间一般相互作用的粒子极限; (4)对渐近极限的稳定性分析,重点是从多维可压缩粘性到具有大初始数据的无粘性流的溶液的消失粘度极限。该项目将导致对这些基本科学问题的新理解和有益的交叉施用,并在多尺度应用中朝着非线性局部差分方程式的非线性稳定理论进行了重大进展。该奖项反映了NSF的法定任务,并认为通过基金会的智力和更广泛的影响,通过评估来评估NSF的法定任务。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inviscid limit of compressible viscoelastic equations with the no-slip boundary condition
- DOI:10.1016/j.jde.2022.12.041
- 发表时间:2021-06
- 期刊:
- 影响因子:2.4
- 作者:Dehua Wang;Feng Xie
- 通讯作者:Dehua Wang;Feng Xie
Stabilization effect of elasticity on three-dimensional compressible vortex sheets
- DOI:10.1016/j.matpur.2023.01.005
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:R. Chen;F. Huang;Dehua Wang;Difan Yuan
- 通讯作者:R. Chen;F. Huang;Dehua Wang;Difan Yuan
Vanishing dissipation limit to the planar rarefaction wave for the three-dimensional compressible Navier-Stokes-Fourier equations
- DOI:10.1016/j.jfa.2022.109499
- 发表时间:2021-01
- 期刊:
- 影响因子:1.7
- 作者:Lin-an Li;Dehua Wang;Yi Wang
- 通讯作者:Lin-an Li;Dehua Wang;Yi Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dehua Wang其他文献
Local well-posedness and low Mach number limit to the compressible magnetohydrodynamic equations in critical spaces
临界空间中可压缩磁流体动力学方程的局部适定性和低马赫数限制
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1
- 作者:
Fucai Li;Yanmin Mu;Dehua Wang - 通讯作者:
Dehua Wang
Study on the photodetachment of H ion near a dielectric sphere
H离子在介电球附近的光脱离研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Qiang Chen;Dehua Wang - 通讯作者:
Dehua Wang
Born–Oppenheimer molecular dynamics simulations on structures of high-density and low-density water: a comparison of the SCAN meta-GGA and PBE GGA functionals
Born-Oppenheimer 对高密度和低密度水结构的分子动力学模拟:SCAN meta-GGA 和 PBE GGA 泛函的比较
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mengli Li;Lu Chen;Lirong Gui;Shuo Cao;Di Liu;Gang Zhao;Mingcui Ding;Jinliang Yan;Dehua Wang - 通讯作者:
Dehua Wang
Photodetachment electron flux of H- in combined electric and magntic field with arbitrary orientation
任意方向电场和磁场联合场中H-的光脱离电子通量
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.9
- 作者:
Dehua Wang - 通讯作者:
Dehua Wang
Vanishing Viscosity Limit to the Planar Rarefaction Wave for the Two-Dimensional Compressible Navier-Stokes Equations
二维可压缩纳维-斯托克斯方程平面稀疏波的消失粘度极限
- DOI:
10.1007/s00220-019-03580-8 - 发表时间:
2020 - 期刊:
- 影响因子:2.4
- 作者:
Lin-an Li;Dehua Wang;Yi Wang - 通讯作者:
Yi Wang
Dehua Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dehua Wang', 18)}}的其他基金
Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
- 批准号:
1907519 - 财政年份:2019
- 资助金额:
$ 11.2万 - 项目类别:
Continuing Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
- 批准号:
1613213 - 财政年份:2016
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Free Boundary Problems and Applications, Spring 2014
免费边界问题和应用,2014 年春季
- 批准号:
1445629 - 财政年份:2015
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
- 批准号:
1312800 - 财政年份:2013
- 资助金额:
$ 11.2万 - 项目类别:
Continuing Grant
Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
- 批准号:
0906160 - 财政年份:2009
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Analysis and Applications of Nonlinear Partial Differential Equations in Conservation Laws
守恒定律中非线性偏微分方程的分析与应用
- 批准号:
0604362 - 财政年份:2006
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244487 - 财政年份:2003
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
相似海外基金
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers from and for Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:推进统计基础和前沿,应对新出现的天文数据挑战
- 批准号:
EP/W015080/1 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Research Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219391 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219397 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219434 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers for and from Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:为新出现的天文数据挑战推进统计基础和前沿
- 批准号:
2113605 - 财政年份:2021
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant