FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws

FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题

基本信息

  • 批准号:
    0244487
  • 负责人:
  • 金额:
    $ 12.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACTFRG: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation LawsHistorically, fluid and solid mechanics study the motion ofincompressible and compressible materials, with or without internaldissipation. For gases and solids with internal dissipation as asecondary effect, the gross wave dynamics is governed by inviscid,thermal diffusionless, dynamics. Within these categories, compressiblemotion for solids corresponds to the study of elastic waves and theirpropagation; compressible motion for fluids is usually associated withinviscid gas dynamics. Furthermore both compressible solids and fluids exhibit shock waves and hence we must search for discontinous solutions to the underlying equations of motion.Incompressible motion on the other hand concernsitself with the motion of denser fluids where the idealization ofincompressibility is useful, e.g. water or oil, as well as the motion ofcertain solids like rubber. While there are still many importantmathematical issues to be resolved for incompressible fluids, for example,the well-posedness of the Navier-Stokes equations in three spacedimensions, the mathematical study of compressiblesolids (as represented by the equations of nonlinear elastodynamics) andfluids (as represented by the Euler equations of inviscid flows)in two and three space dimensions is even less developed.This provides the motivation to the proposers to collaborate in athree year effort to advance the mathematical understanding of themulti-dimensional equations of inviscid compressible fluid dynamicsand related problems in elastodynamics.The core of our plan is to arrange a sustained interaction between andaround the members of the group, who will(1) collaborate scientifically, focusing on the advancement of theanalysis of multi-dimensional compressible flows by developing newtheoretical techniques and by using and designing effective, robust andreliable numerical methods;(2) work together over the next several years to create the environmentand manpower necessary for the research on multi-dimensional compressibleEuler equations and related problems to flourish; and in the meantime,(3) share the responsibility of training graduate students andpostdoctoral fellows.The project is devoted to a mathematical study of the Euler equationsgoverning the motion of an inviscid compressible fluid and relatedproblems. Compressible fluids occur all around us in nature, e.g. gasesand plasmas, whose study is crucial to understanding aerodyanmics,atmospheric sciences, thermodynamics, etc.While the one-dimensional fluid flows are rather well understood, thegeneral theory for multi-dimensional flows is comparatively mathematicallyunderdeveloped. The proposers will collaborate in a threeyear effort to advance the mathematical understanding of themulti-dimensional equations of inviscid compressible fluid dynamics.Success in this project will advance knowledge of this fundamental area ofmathematics and mechanics and will introduce a new generation ofresearchers to the outstanding problems in the field.
AbstractFRG:可压缩流体流动流的Euler方程的多维问题以及双曲线保护的相关问题,从法则上,流体和固体力学研究,具有不可压缩和可压缩材料的运动,有或没有内部隔离。对于具有内部耗散效应的气体和固体,总波动力学由无粘性,热扩散无动力学控制。在这些类别中,固体的压缩词对应于弹性波的研究及其传播。流体的可压缩运动通常与Viscid气体动力学有关。此外,可压缩的固体和流体都表现出冲击波,因此我们必须搜索对基础运动方程式的不受欢迎的解决方案。另一方面,不可压缩的运动涉及浓缩流体的运动,在这些运动中,在这些运动中的运动理想化是有用的,例如。水或油,以及诸如橡胶之类的固体的运动。 While there are still many importantmathematical issues to be resolved for incompressible fluids, for example,the well-posedness of the Navier-Stokes equations in three spacedimensions, the mathematical study of compressiblesolids (as represented by the equations of nonlinear elastodynamics) andfluids (as represented by the Euler equations of inviscid flows)in two and three space dimensions is even less这为提议者提供了在Athe Year努力中进行协作的动机,以推进对弹性动力学中可压缩的流体动态和相关问题的数学理解,并在弹性动力学中进行的相关问题。我们计划的核心是安排在Andarounds的成员(1)范围内(1)跨越(1)跨越的跨度,该组织将(1)跨越(1)跨越(1)跨越(1)跨越的跨度(1)跨度的跨度(1)跨越(1)的跨度。新理论技术,并通过使用和设计有效的,可靠的数值方法;(2)在接下来的几年中共同努力,以创造有关多维压缩器方程和相关问题的研究所必需的环境和人力,以繁荣发展;与此同时,(3)分享培训研究生和Postdoctoral Fellows的责任。该项目致力于对Euler方程进行的数学研究,该研究促进了Indiscid可压缩的液体和相关问题的运动。可压缩的流体在我们周围发生,例如气体和等离子体的研究对于理解空气疗法,大气科学,热力学等至关重要。虽然一维流体流得到充分了解,但多维流的统治理论是相比于数学的。提议者将进行三年的努力,以提高对无粘性可压缩流体动力学方程的数学理解。该项目中的核心将促进对这一基本的MATHEMATICS和机械师的了解,并将引入新一代研究人员的新一代研究人员,以了解该领域的杰出问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dehua Wang其他文献

Photodetachment electron flux of H- in combined electric and magntic field with arbitrary orientation
任意方向电场和磁场联合场中H-的光脱离电子通量
Born–Oppenheimer molecular dynamics simulations on structures of high-density and low-density water: a comparison of the SCAN meta-GGA and PBE GGA functionals
Born-Oppenheimer 对高密度和低密度水结构的分子动力学模拟:SCAN meta-GGA 和 PBE GGA 泛函的比较
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengli Li;Lu Chen;Lirong Gui;Shuo Cao;Di Liu;Gang Zhao;Mingcui Ding;Jinliang Yan;Dehua Wang
  • 通讯作者:
    Dehua Wang
Local well-posedness and low Mach number limit to the compressible magnetohydrodynamic equations in critical spaces
临界空间中可压缩磁流体动力学方程的局部适定性和低马赫数限制
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Fucai Li;Yanmin Mu;Dehua Wang
  • 通讯作者:
    Dehua Wang
Synthesis of hierarchical beta zeolite by using a bifunctional cationic polymer and the improved catalytic performance
双功能阳离子聚合物合成分级β沸石及其催化性能的改进
  • DOI:
    10.1039/c4ra14295k
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Peng Tian;Miao Yang;Dong Fan;Linying Wang;Shutao Xu;Chan Wang;Dehua Wang;Yue Yang;Zhongmin Liu
  • 通讯作者:
    Zhongmin Liu
Photodetachment of hydrogen negative ions in bichromatic oscillating electric fields
双色振荡电场中氢负离子的光脱离
  • DOI:
    10.1103/physreva.95.043410
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Dehua Wang;Qinfeng Xu;Xiaoguang Ma
  • 通讯作者:
    Xiaoguang Ma

Dehua Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dehua Wang', 18)}}的其他基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
  • 批准号:
    1907519
  • 财政年份:
    2019
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Continuing Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
  • 批准号:
    1613213
  • 财政年份:
    2016
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Standard Grant
Free Boundary Problems and Applications, Spring 2014
免费边界问题和应用,2014 年春季
  • 批准号:
    1445629
  • 财政年份:
    2015
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
  • 批准号:
    1312800
  • 财政年份:
    2013
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Continuing Grant
Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
  • 批准号:
    0906160
  • 财政年份:
    2009
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Standard Grant
Analysis and Applications of Nonlinear Partial Differential Equations in Conservation Laws
守恒定律中非线性偏微分方程的分析与应用
  • 批准号:
    0604362
  • 财政年份:
    2006
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了