CPA-DA-T: A Collaborative Framework for Design and Fabrication of Metallic Carbon Nanotube based Interconnect Structures for VLSI Circuits and Systems Applications

CPA-DA-T:用于设计和制造用于超大规模集成电路和系统应用的基于金属碳纳米管的互连结构的协作框架

基本信息

  • 批准号:
    0811880
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

Proposal ID: 0811880PI Name: Kaustav BanerjeeInstitution: University of California-Santa BarbaraTitle: A Collaborative Framework for Design and Fabrication of Metallic Carbon Nanotube based Interconnect Structures for VLSI Circuits and Systems Applications ABSTRACTThe semiconductor industry is confronting an acute problem in the interconnect area due to the limited current carrying capability of copper wires, which are presently used to connect billions of transistors in every integrated circuit (IC) including microprocessors that are vital for information transmission, processing and storage. As IC feature sizes continue to be scaled below 45 nanometer, copper wires exhibit significant ?size effects? resulting in a sharp rise in their resistivity, which, in turn, has adverse impact both on their performance as well as reliability---in the form of current carrying capacity. This limitation of copper interconnects has been recently highlighted by various leading semiconductor companies around the world as well as in the International Technology Roadmap for Semiconductors (ITRS), and threatens to slow down or even stall the traditional growth of the semiconductor and related industries. Hence, it is critical to identify and develop new interconnect solutions. Carbon nanotubes, tiny nanostructures 80,000 times narrower than a human hair, are known to have amazing electrical, thermal and mechanical properties, and can potentially address the challenges faced by copper and thereby extend the lifetime of ?electrical interconnects?. Most of these outstanding properties arise from the ?low-dimensionality? of CNTs---since they are essentially 1-dimensional structures. The investigators seek to, for the first time, understand how these tiny structures can be efficiently integrated into microprocessors and other circuitry to address the dire need for faster and more reliable on-chip wiring. The CNT interconnect structures also offer exciting prospects for design of ultra high-density energy storage elements (such as capacitors and inductors), as well as various system-level architectural innovations. This collaborative four-year project brings together a team of scientists and engineers for addressing the key scientific and engineering challenges associated with the design and fabrication of CNT interconnect structures for various circuits and systems applications. The investigators employ an interdisciplinary approach that combines innovative process technology and circuit/system architecture development supported by rigorous modeling, analysis, and metrology techniques. This presents an outstanding opportunity to truly demonstrate the prospects of CNTs in overcoming one of the major limitations of nanometer scale ICs, and is expected to have wide implications for the semiconductor industry. This research will help scaling of CMOS circuits to its ultimate limits and also open new opportunities in mixed-signal, analog and radio-frequency (RF) signal processing applications as well as in 3-dimensional integrated circuit design, thereby maintaining U.S. competitiveness in the worldwide semiconductor market. Broader impact of the research includes emerging off-chip applications of carbon nanotubes as ?solder bumps? and also as an excellent thermal interface material for heat removal from chips and printed circuit boards. The overall program also ties research to education at all levels (K-12, undergraduate, graduate, continuing-education) partly via participation in programs designed by education professionals, besides focusing on recruitment and retention of underrepresented groups in nanoscience and engineering.
提案 ID:0811880PI 名称:Kaustav Banerjee 机构:加州大学圣巴巴拉分校 标题:用于 VLSI 电路和系统应用的基于金属碳纳米管的互连结构设计和制造的协作框架 摘要 由于以下原因,半导体行业在互连领域面临着严重的问题:铜线的载流能力有限,目前铜线用于连接每个集成电路 (IC) 中的数十亿个晶体管,包括微处理器对于信息传输、处理和存储至关重要。 随着 IC 特征尺寸继续缩小到 45 纳米以下,铜线表现出显着的“尺寸效应”。导致其电阻率急剧上升,进而对其性能和可靠性(以载流能力的形式)产生不利影响。最近,全球多家领先的半导体公司以及国际半导体技术路线图(ITRS)都强调了铜互连的这种局限性,并有可能减缓甚至阻碍半导体及相关行业的传统增长。 因此,识别和开发新的互连解决方案至关重要。碳纳米管是一种比人类头发丝细 80,000 倍的微小纳米结构,具有惊人的电学、热学和机械性能,可以解决铜面临的挑战,从而延长“电气互连”的使用寿命。大多数这些突出的特性都源于“低维”。碳纳米管——因为它们本质上是一维结构。 研究人员首次试图了解如何将这些微小结构有效地集成到微处理器和其他电路中,以满足对更快、更可靠的片上布线的迫切需求。 CNT互连结构还为超高密度储能元件(例如电容器和电感器)的设计以及各种系统级架构创新提供了令人兴奋的前景。 这个为期四年的合作项目汇集了一组科学家和工程师,致力于解决与各种电路和系统应用的 CNT 互连结构的设计和制造相关的关键科学和工程挑战。研究人员采用跨学科方法,将创新工艺技术和电路/系统架构开发相结合,并由严格的建模、分析和计量技术支持。这提供了一个绝佳的机会,可以真正展示碳纳米管在克服纳米级集成电路的主要限制之一方面的前景,并有望对半导体行业产生广泛的影响。 这项研究将有助于将 CMOS 电路缩小到其极限,并为混合信号、模拟和射频 (RF) 信号处理应用以及 3 维集成电路设计开辟新的机遇,从而保持美国在该领域的竞争力。全球半导体市场。 该研究的更广泛影响包括碳纳米管作为“焊料凸块”的新兴片外应用。也可作为出色的热界面材料,用于芯片和印刷电路板的散热。整个计划还将研究与各级教育(K-12、本科生、研究生、继续教育)联系起来,部分通过参与教育专业人员设计的计划,此外还重点关注纳米科学和工程领域代表性不足群体的招募和保留。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kaustav Banerjee其他文献

Localized heating effects and scaling of sub-0.18 micron CMOS devices
0.18 微米以下 CMOS 器件的局部热效应和缩放
University of California, Santa Barbara
加州大学圣塔芭芭拉分校
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaustav Banerjee
  • 通讯作者:
    Kaustav Banerjee
Electrical characterization of back-gated and top-gated germanium-core/silicon-shell nanowire field-effect transistors
背栅和顶栅锗核/硅壳纳米线场效应晶体管的电气特性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marolop Dapot Krisman Simanullang,Gde Bimananda Mahardika Wisna,Koichi Usami;Wei Cao;Kaustav Banerjee;and Shunri Oda
  • 通讯作者:
    and Shunri Oda
One-Dimensional Edge Contacts to Two-Dimensional Transition-Metal Dichalcogenides: Uncovering the Role of Schottky-Barrier Anisotropy in Charge Transport across math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll">msub>mrow> mi>Mo/mi>mi mathvariant="normal">S/mi>/mrow>
一维边缘接触到二维过渡金属二硫化物:揭示肖特基势垒各向异性在数学电荷传输中的作用 xmlns="http://www.w3.org/1998/Math/MathML" display="inline
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Parto;Arnab Pal;Tanmay Chavan;Kunjesh Agashiwala;Chao;W. Cao;Kaustav Banerjee
  • 通讯作者:
    Kaustav Banerjee
An ultra energy-efficient hardware platform for neuromorphic computing enabled by 2D-TMD tunnel-FETs
由 2D-TMD 隧道 FET 支持的神经拟态计算超节能硬件平台
  • DOI:
    10.1038/s41467-024-46397-3
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Arnab Pal;Zichun Chai;Junkai Jiang;W. Cao;Mike Davies;Vivek De;Kaustav Banerjee
  • 通讯作者:
    Kaustav Banerjee

Kaustav Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kaustav Banerjee', 18)}}的其他基金

EAGER: Exploration of 3D-Transistors with 2D-TMDs for Ultimate Miniaturization
EAGER:探索具有 2D-TMD 的 3D 晶体管以实现终极小型化
  • 批准号:
    2332341
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
FET:Small: An Integrated Unipolar-0.5T0.5R RRAM Crossbar Array for Neuromorphic Computing
FET:小型:用于神经形态计算的集成单极 0.5T0.5R RRAM 交叉阵列
  • 批准号:
    2132820
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF:EAGER: 2D Layered Heterostructure based Tunnel Field-Effect Transistors (TFETs) and Circuits
NSF:EAGER:基于 2D 分层异质结构的隧道场效应晶体管 (TFET) 和电路
  • 批准号:
    1550230
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SHF: Medium: A Collaborative Framework for Developing Green Electronics for Next-Generation Computing Applications
SHF:Medium:为下一代计算应用开发绿色电子的协作框架
  • 批准号:
    1162633
  • 财政年份:
    2012
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
SHF:Small: A CAD Framework for Coupled Electrical-Thermal Modeling of Interconnects in 3D Integrated Circuits
SHF:Small:3D 集成电路互连电热耦合建模的 CAD 框架
  • 批准号:
    0917385
  • 财政年份:
    2009
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
A CAD Framework for Multiscale Electrothermal Modeling and Simulation of Non-Classical CMOS Devices
非经典 CMOS 器件多尺度电热建模和仿真的 CAD 框架
  • 批准号:
    0541465
  • 财政年份:
    2006
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似国自然基金

下丘脑DA/NPY通路在氨氮抑制西伯利亚鲟摄食中的作用机制研究
  • 批准号:
    32302972
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多组学方法探讨ATR母体暴露经“肠-脑”轴致子代DA能神经损伤机制及防护研究
  • 批准号:
    82373612
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
电针基于PACS2调控线粒体-内质网偶联改善帕金森病运动症状的DA神经元保护机制研究
  • 批准号:
    82305365
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MDH2琥珀酰化修饰研究DA增强机体抗细菌感染作用的分子机制
  • 批准号:
    82373919
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
枣泛素特异性蛋白酶ZjUBP14/DA3调控果实大小的机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

BIGDATA: Small: DA: Collaborative Research: Real Time Observation Analysis for Healthcare Applications via Automatic Adaptation to Hardware Limitations
BIGDATA:小型:DA:协作研究:通过自动适应硬件限制对医疗保健应用进行实时观察分析
  • 批准号:
    1638429
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
BIGDATA: Small: DA: Collaborative Research: Real Time Observation Analysis for Healthcare Applications via Automatic Adaptation to Hardware Limitations
BIGDATA:小型:DA:协作研究:通过自动适应硬件限制对医疗保健应用进行实时观察分析
  • 批准号:
    1251031
  • 财政年份:
    2013
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
BIGDATA Small DA ESCE Interactive and Collaborative On-line virtual Screening
BIGDATA Small DA ESCE 互动协作在线虚拟放映
  • 批准号:
    8599847
  • 财政年份:
    2013
  • 资助金额:
    $ 100万
  • 项目类别:
BIGDATA: Small: DA: Collaborative Research: From Data To Users: Providing Interpretable and Verifiable Explanations in Data Mining
BIGDATA:小:DA:协作研究:从数据到用户:在数据挖掘中提供可解释和可验证的解释
  • 批准号:
    1251110
  • 财政年份:
    2013
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
BIGDATA: Small: DCM: DA: Collaborative Research: SMASH -- Scalable Multimedia content AnalysiS in a High-level language
大数据: 小: DCM: DA: 协作研究: SMASH - 使用高级语言进行可扩展多媒体内容分析
  • 批准号:
    1251276
  • 财政年份:
    2013
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了