SGER: Biomechanics of Suction Feeding in Teleost Fishes

SGER:硬骨鱼类吸食的生物力学

基本信息

  • 批准号:
    0326968
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-15 至 2005-02-28
  • 项目状态:
    已结题

项目摘要

SGER: Biomechanics of suction feeding in teleost fishesPeter C. Wainwright, Angela Cheer, and Harry A. DwyerUniversity of California, DavisThis research will investigate the mechanics of aquatic suction feeding, the most widespread method of aquatic prey capture used by vertebrate animals. Suction feeding is found in at least some members of every major group of tetrapods, and is the principal prey capture mechanism used by teleost fishes. The behavior involves the explosive expansion of the mouth and oral cavity to accelerate water and prey into the mouth. The aim of this research is to use a new method to visualize and measure the water flows generated by fishes during suction feeding. The lack of existing data on suction feeding flows is due to the considerable difficulty of visualizing and measuring water flow in biological systems. These flows are the focus of this research proposal because they exert forces on prey, transporting them to the predator and determine the success of suction feeders. Understanding the spatial and temporal pattern of water flow generated by suction feeders and how they exert forces on prey is the key to understanding the mechanics of suction feeding and its broader biology. Digital Particle Image Velocimetry (DPIV), a technology that permits the visualization and quantification of water motion, will be developed as a tool for studying suction feeding in experiments with a focal species, the bluegill sunfish, Lepomis macrochirus. DPIV will be used in conjunction with measurements of suction pressure and ultrasound of skull movements to address three issues. First, what are the magnitudes of the forces exerted on prey during suction feeding and what is the relative importance of drag and the acceleration reaction in generating these forces? Preliminary calculations with a computational fluid dynamics model indicate that acceleration reaction, a previously ignored force that is generated by flows of changing velocity, may outpace the more familiar drag forces. Demonstrating an important role for acceleration reaction would greatly alter the picture of forces that are experienced by prey, and may help to explain the explosive nature of suction feeding, one of the fastest feeding behaviors seen among vertebrate animals. Second, the quantitative relationship between suction pressure and the flow velocities that are generated during prey capture will be determined. This relationship will be used to test the widely held assumption that peak suction flows are proportional to peak suction pressure. Third, the temporal and spatial patterns of flow velocity during suction feeding will be measured. This will establish the critical area and time-course of predator-prey interactions and provide a benchmark for future comparative studies.This research represents a novel application of DPIV technology in studies with live aquatic organisms that has not previously been applied to feeding behavior. Developing this method presents significant challenges associated with animal training and visualization of flow close to moving jaw structures. The risk of attempting to establish this new method for research on suction feeding is justified because of the fundamental nature of flow data to understanding suction feeding mechanics. Measuring the spatial and temporal pattern of flow velocity is a key to inferring forces and hence suction feeding performance. This research project will establish a new technology for studying suction feeding and will contribute to a deeper understanding of a major step in vertebrate evolution. A greater knowledge of suction feeding will broaden our insights into the relationship between skull design and biomechanics in teleost fishes. Broader impacts of this project include the application of unsteady flows in surgical suction devices. This research will also provide training for a postdoctoral researcher who is bridging engineering and biology disciplines.
SGER:硬骨鱼类吸食的生物力学Peter C. Wainwright、Angela Cheer 和 Harry A. Dwyer 加州大学戴维斯分校这项研究将研究水生吸食的机制,这是脊椎动物使用的最广泛的水生猎物捕获方法。吸食性至少存在于四足动物的每个主要类群的某些成员中,并且是硬骨鱼使用的主要猎物捕获机制。该行为涉及口腔和口腔的爆炸性扩张,以加速水和猎物进入口腔。这项研究的目的是使用一种新方法来可视化和测量鱼类吸食过程中产生的水流。缺乏有关吸食流量的现有数据是由于可视化和测量生物系统中的水流量相当困难。这些流动是本研究提案的重点,因为它们对猎物施加力,将其运送给捕食者并决定吸力喂食器的成功。了解吸食器产生的水流的空间和时间模式以及它们如何对猎物施加力是了解吸食机制及其更广泛的生物学的关键。数字粒子图像测速 (DPIV) 是一种能够可视化和量化水运动的技术,将被开发为研究焦点物种翻车鱼 (Lepomis Macrochirus) 实验中吸食的工具。 DPIV 将与吸气压力测量和颅骨运动超声测量结合使用,以解决三个问题。首先,吸食过程中施加在猎物上的力的大小是多少,阻力和加速反作用在产生这些力时的相对重要性是什么?计算流体动力学模型的初步计算表明,加速反作用力(一种以前被忽略的由速度变化的流动产生的力)可能超过更熟悉的阻力。证明加速反应的重要作用将极大地改变猎物所经历的力的图景,并可能有助于解释吸食的爆炸性本质,吸食是脊椎动物中最快的进食行为之一。其次,将确定吸入压力与捕获猎物期间产生的流速之间的定量关系。该关系将用于测试广泛持有的假设,即峰值吸入流量与峰值吸入压力成正比。第三,将测量吸料期间流速的时间和空间模式。这将建立捕食者与猎物相互作用的关键区域和时间过程,并为未来的比较研究提供基准。这项研究代表了 DPIV 技术在活水生生物研究中的一种新颖应用,该技术以前从未应用于摄食行为。开发这种方法提出了与动物训练和靠近移动颌结构的流动可视化相关的重大挑战。由于流量数据对于理解吸食机理的基本性质,尝试建立这种新的吸食研究方法的风险是合理的。测量流速的空间和时间模式是推断力以及吸力喂食性能的关键。该研究项目将建立一种研究吸食的新技术,并将有助于更深入地了解脊椎动物进化的一个重要步骤。对吸食的更多了解将拓宽我们对硬骨鱼头骨设计与生物力学之间关系的认识。该项目更广泛的影响包括非定常流在手术吸引装置中的应用。这项研究还将为桥接工程和生物学学科的博士后研究员提供培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Wainwright其他文献

Peter Wainwright的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Wainwright', 18)}}的其他基金

DISSERTATION RESEARCH: Innovation and constraint: the evolution of power-amplified feeding in syngnathiform fishes
论文研究:创新与约束:合颌鱼类功率放大摄食的演化
  • 批准号:
    1500800
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Causes and Consequences of Exceptional Diversity in Spiny-Rayed Fishes
合作研究:刺鳐鱼异常多样性的原因和后果
  • 批准号:
    1061981
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Fitness landscapes in a recent adaptive radiation of Cyprinodon pupfishes
论文研究:鲤鱼近期适应性辐射的适应度景观
  • 批准号:
    1010849
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Suction Feeding Evolution: Functional Morphology, Biomechanics and Performance
吸力喂养的进化:功能形态、生物力学和性能
  • 批准号:
    0924489
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
DISSERTATION RESEARCH: "Factors contributing to the morphological diversification of darters (Teleostei: Percidae)"
论文研究:“影响蛇鲈形态多样化的因素(Teleostei:鲈科)”
  • 批准号:
    0710394
  • 财政年份:
    2007
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Workshop: Evolution of Motor Patterns on June 5-6, 2007 at Arlington, VA
研讨会:运动模式的演变,2007 年 6 月 5 日至 6 日在弗吉尼亚州阿灵顿举行
  • 批准号:
    0716834
  • 财政年份:
    2007
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Phylogenetics and Key Innovations in Labroid Fishes
合作研究:实验室鱼类的系统发育学和关键创新
  • 批准号:
    0717009
  • 财政年份:
    2007
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Biomechanics of suction feeding in teleost fishes
硬骨鱼吸食的生物力学
  • 批准号:
    0444554
  • 财政年份:
    2005
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Dissertation Research: Testing for Disruptive Competition in Solitary Populations of the Three-spined Stickleback
论文研究:三刺棘鱼独居种群中破坏性竞争的测试
  • 批准号:
    0105147
  • 财政年份:
    2001
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Evolution of the Pharyngeal Jaw Apparatus in Ray-Finned Fishes
射线鳍鱼咽颌装置的进化
  • 批准号:
    0076436
  • 财政年份:
    2000
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

TG2调控白血病干细胞的生物力学特性及干性维持
  • 批准号:
    82370159
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于生物力学改造的新型NKG2D CAR NK在肝细胞癌治疗中的作用及机制研究
  • 批准号:
    32301035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生物力学传导通路mechano-YAP/TAZ对放射损伤引起的勃起功能障碍中组织再生和功能修复的研究
  • 批准号:
    82373525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于等离激元纳米传感器的细胞生物力学研究
  • 批准号:
    22374072
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于医学影像及生物力学的静脉性搏动性耳鸣乙状窦骨壁缺失的发病风险评估研究
  • 批准号:
    82302184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The impact of a biomimetic nipple on infant performance during breast and bottle feeding
仿生奶嘴对母乳喂养和奶瓶喂养期间婴儿表现的影响
  • 批准号:
    10709900
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
Quantifying Bone and Skin Movement in the Residual Limb-Socket Interface of Individuals with Transtibial Amputation Using Dynamic Stereo X-Ray
使用动态立体 X 射线量化小腿截肢者残肢窝接口中的骨骼和皮肤运动
  • 批准号:
    10597108
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
The impact of a biomimetic nipple on infant performance during breast and bottle feeding
仿生奶嘴对母乳喂养和奶瓶喂养期间婴儿表现的影响
  • 批准号:
    10598856
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
The impact of biomimetic nipple on infant feeding function
仿生奶嘴对婴儿喂养功能的影响
  • 批准号:
    10662633
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
The impact of biomimetic nipple on infant feeding function
仿生奶嘴对婴儿喂养功能的影响
  • 批准号:
    10671740
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了