Off-the-shelf Learning Algorithms for Structural Supervised Learning

用于结构监督学习的现成学习算法

基本信息

  • 批准号:
    0307592
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2007-11-30
  • 项目状态:
    已结题

项目摘要

This project will develop machine learning algorithms, software tools, and supporting theory for solving structural supervised learning problems. Existing theory and algorithms have focused on learning an unknown function from training examples, where the unknown function maps from a feature vector to one of a small number of classes. Emerging applications in science and industry require learning much more complex functions that map from complex input spaces (e.g., 2-dimensional maps, time series, sequences, and graphs) to complex output spaces (e.g., other 2-dimensional maps, time series, sequences, and graphs). Examples include detecting fraudulent transactions in a transaction sequence, assigning parts of speech (noun, verb, etc.) to each word in a sentence, identifying genes in DNA sequences, and assigning a land cover class to each pixel in a remote-sensed image. However, existing statistical, machine learning, and data mining packages do not provide any support for these complex tasks, nor has machine learning theory been developed to analyze these tasks. This project will develop a general formulation of the structural supervised learning (SSL) problem, design and test a collection of algorithms for solving SSL problems, and develop a prototype system that will provide "off -the-shelf " tools for practitioners to develop SSL applications. This project will have several broader impacts. First, many important problems confronting society involve finding patterns in sequential, spatial, or structural data. These include (a) law enforcement challenges, such as detecting theft of credit cards and health insurance fraud, (b) security challenges, such as detecting attempts by terrorists to send bombs in shipping containers, (c) health and safety applications, such as detecting outbreaks of diseases from temporal and spatial data about emergency room admissions, and (d) ecological applications, such as monitoring the health of ecosystems by analyzing sequences of remote-sensed images. The tools and techniques developed in this work can address all of these problems. Second, the project will train graduate students, including women (who are underrepresented in computer science), and provide them opportunities to attend scientific conferences and workshops.
该项目将开发机器学习算法、软件工具和支持理论来解决结构性监督学习问题。现有的理论和算法侧重于从训练示例中学习未知函数,其中未知函数从特征向量映射到少数类别之一。科学和工业中的新兴应用需要学习更复杂的函数,这些函数从复杂的输入空间(例如,二维地图、时间序列、序列和图形)映射到复杂的输出空间(例如,其他二维地图、时间序列、序列和图表)。示例包括检测交易序列中的欺诈交易、为句子中的每个单词分配词性(名词、动词等)、识别 DNA 序列中的基因以及为遥感图像中的每个像素分配土地覆盖类别。然而,现有的统计、机器学习和数据挖掘软件包没有为这些复杂任务提供任何支持,也没有发展出机器学习理论来分析这些任务。该项目将开发结构监督学习(SSL)问题的一般表述,设计和测试解决 SSL 问题的算法集合,并开发一个原型系统,为从业者开发 SSL 提供“现成”工具应用程序。该项目将产生几个更广泛的影响。首先,社会面临的许多重要问题都涉及在顺序、空间或结构数据中寻找模式。其中包括 (a) 执法挑战,例如检测信用卡盗窃和健康保险欺诈,(b) 安全挑战,例如检测恐怖分子在集装箱中发送炸弹的企图,(c) 健康和安全应用,例如从急诊室入院的时间和空间数据中检测疾病的爆发,以及(d)生态应用,例如通过分析遥感图像序列来监测生态系统的健康状况。这项工作中开发的工具和技术可以解决所有这些问题。其次,该项目将培训研究生,包括女性(计算机科学领域代表性不足),并为她们提供参加科学会议和研讨会的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Dietterich其他文献

Thomas Dietterich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Dietterich', 18)}}的其他基金

Collaborative Research: CompSustNet: Expanding the Horizons of Computational Sustainability
合作研究:CompSustNet:拓展计算可持续性的视野
  • 批准号:
    1521687
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Algorithms and Cyberinfrastructure for High-Precision Automated Quality Control of Hydro-Meteo Sensor Networks
III:媒介:合作研究:Hydro-Meteo 传感器网络高精度自动化质量控制的算法和网络基础设施
  • 批准号:
    1514550
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CyberSEES: Type 2: Computing and Visualizing Optimal Policies for Ecosystem Management
Cyber​​SEES:类型 2:计算和可视化生态系统管理的最佳策略
  • 批准号:
    1331932
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AVATOL - Next Generation Phenomics for the Tree of Life
合作研究:AVATOL - 生命之树的下一代表型组学
  • 批准号:
    1208272
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: BirdCast: Novel Machine Learning Methods for Understanding Continent-Scale Bird Migration
合作研究:CDI-Type II:BirdCast:用于理解大陆规模鸟类迁徙的新型机器学习方法
  • 批准号:
    1125228
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
II-EN: A compute cluster and software tools for Monte-Carlo methods in artificial intelligence
II-EN:人工智能中蒙特卡罗方法的计算集群和软件工具
  • 批准号:
    0958482
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Sustainability: Computational Methods for a Sustainable Environment, Economy, and Society
合作研究:计算可持续性:可持续环境、经济和社会的计算方法
  • 批准号:
    0832804
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RI: Machine Learning for Robust Recognition of Invertebrate Specimens in Ecological Science
RI:机器学习在生态科学中对无脊椎动物标本的鲁棒识别
  • 批准号:
    0705765
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Exploiting Contextual Knowledge to Design Input Representations for Machine Learning
SGER:利用上下文知识设计机器学习的输入表示
  • 批准号:
    0335525
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Student Participant Support for the International Conference on Machine Learning 2003
2003 年国际机器学习会议的学生参与者支持
  • 批准号:
    0331758
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

独立基础上钢筋混凝土框架子结构屈服机制研究
  • 批准号:
    51578228
  • 批准年份:
    2015
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
应用细胞自组装及电场诱导技术构建off-the-shelf组织工程血管
  • 批准号:
    81201210
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
  • 批准号:
    NE/Y001338/1
  • 财政年份:
    2026
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
  • 批准号:
    NE/Y000811/1
  • 财政年份:
    2026
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
  • 批准号:
    2244690
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Off-the-shelf hypoimmunogenic photoreceptors for treatment of blinding retinal disease
现成的低免疫原性光感受器用于治疗致盲性视网膜疾病
  • 批准号:
    EP/Y031016/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
超分子架橋とロタキサン架橋の共導入による高弾性かつ高靭性エラストマー材料の創製
通过共同引入超分子交联和轮烷交联创建高弹性和坚韧的弹性体材料
  • 批准号:
    24K08526
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了