Collaborative Research: CDI-Type II: BirdCast: Novel Machine Learning Methods for Understanding Continent-Scale Bird Migration

合作研究:CDI-Type II:BirdCast:用于理解大陆规模鸟类迁徙的新型机器学习方法

基本信息

  • 批准号:
    1125228
  • 负责人:
  • 金额:
    $ 98.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

An interdisciplinary team of computer scientists, statisticians, and ornithologists will develop novel computer science methods and apply them to the challenge of understanding the annual migration of birds across North America, which is one of the most complex and dynamic natural phenomena on the planet. While direct observation of migrating birds is limited to a handful of birds wearing tracking devices, other sources of data provide partial information about migration that, when appropriately combined, will provide insight into migration at a scale previously unimaginable. These sources include a continent-wide network of volunteer bird watchers, night flight calls captured by a network of acoustic monitoring stations, continent-scale weather patterns gathered by a network of weather stations, and clouds of migrating birds detected at night by WSR-88D weather radar stations. To analyze these data, the team will develop two innovative machine learning techniques-Collective Graphical Models (CGMs) and Semi-Parametric Latent Process Models (SLPMs). The resulting model will be able to identify the complex conditions governing the dynamics of migration behavior including the choice of migratory pathways, the factors that influence when birds migrate, and the speed and duration of each night's movements. CGMs greatly extend the scope of phenomena that can be captured with graphical models. Under suitable conditions, a CGM is able to recover a model of the behavior of individuals using only collective observations.For BirdCast, it will construct a model of individual bird dynamics from the collective observations provided by birders, acoustic and weather stations, and weather radar. Once the model is constructed, it will be applied to live data feeds (bird sightings, acoustic detections, radar detections, and weather forecasts) to predict bird migration in real time. SLPMs are an extension of latent process models, such as the CGM for bird migration, in which the dynamics of a process is represented by latent variables that are observed only indirectly. In an SLPM, the conditional probability distribution of each variable is modeled using flexible, non-parametric methods from machine learning, such as boosted regression trees. Introducing such flexible methods such as CGMs and SLPMs into latent variable models raises difficult challenges for model fitting and validation. Preventing over-fitting will require the creation of novel information regularization and latent model cross-validation methods to enforce latent variable semantics.The proposed work will allow, for the first time, real-time predictions of bird migrations: when they migrate, where they migrate, and how far they will be flying. Accurate models of migration have broad application for basic research by allowing researchers to understand behavioral aspects of migration, how migration timing and pathways respond to variation in climatic conditions, and whether linkages exist between annual variation in migration timing and subsequent inter-annual changes in population size.BirdCast will expand opportunities for the public to participate in the gathering of data and its analysis. The existing data set has more than 60 million observations, and the size is growing exponentially. Last year, volunteers contributed more than 1.3 million hours observing birds. Student engagement in the research is significant as well.
由计算机科学家、统计学家和鸟类学家组成的跨学科团队将开发新颖的计算机科学方法,并将其应用于理解北美鸟类每年迁徙的挑战,这是地球上最复杂和动态的自然现象之一。虽然对迁徙鸟类的直接观察仅限于少数佩戴跟踪设备的鸟类,但其他数据源提供了有关迁徙的部分信息,如果将这些信息适当结合起来,将提供对以前难以想象的迁徙规模的深入了解。这些来源包括覆盖整个大陆的鸟类观察志愿者网络、声学监测站网络捕获的夜间飞行呼叫、气象站网络收集的大陆范围的天气模式以及 WSR-88D 在夜间检测到的候鸟云。气象雷达站。为了分析这些数据,该团队将开发两种创新的机器学习技术——集体图形模型(CGM)和半参数潜在过程模型(SLPM)。由此产生的模型将能够识别控制迁徙行为动态的复杂条件,包括迁徙路径的选择、影响鸟类迁徙的因素以及每晚迁徙的速度和持续时间。 CGM 极大地扩展了可以用图形模型捕获的现象的范围。在适当的条件下,CGM 能够仅使用集体观测来恢复个体行为的模型。对于 BirdCast,它将根据观鸟者、声学和气象站以及气象雷达提供的集体观测构建个体鸟类动态模型。模型构建完成后,将应用于实时数据源(鸟类观测、声学检测、雷达检测和天气预报),以实时预测鸟类迁徙。 SLPM 是潜在过程模型的扩展,例如鸟类迁徙的 CGM,其中过程的动态由仅间接观察到的潜在变量表示。在 SLPM 中,每个变量的条件概率分布是使用机器学习中灵活的非参数方法(例如提升回归树)进行建模的。将 CGM 和 SLPM 等灵活方法引入潜变量模型给模型拟合和验证带来了艰巨的挑战。防止过度拟合需要创建新颖的信息正则化和潜在模型交叉验证方法来强制执行潜在变量语义。所提出的工作将首次允许实时预测鸟类迁徙:它们何时迁徙、迁徙到哪里迁徙,以及它们将飞多远。准确的迁徙模型在基础研究中具有广泛的应用,它使研究人员能够了解迁徙的行为方面、迁徙时间和路径如何响应气候条件的变化,以及迁徙时间的年度变化与随后的人口年际变化之间是否存在联系。 size.BirdCast 将扩大公众参与数据收集及其分析的机会。 现有数据集拥有超过 6000 万个观测值,并且规模正在呈指数级增长。去年,志愿者贡献了超过 130 万小时的鸟类观测时间。 学生对研究的参与也很重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Dietterich其他文献

Thomas Dietterich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Dietterich', 18)}}的其他基金

Collaborative Research: CompSustNet: Expanding the Horizons of Computational Sustainability
合作研究:CompSustNet:拓展计算可持续性的视野
  • 批准号:
    1521687
  • 财政年份:
    2015
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Algorithms and Cyberinfrastructure for High-Precision Automated Quality Control of Hydro-Meteo Sensor Networks
III:媒介:合作研究:Hydro-Meteo 传感器网络高精度自动化质量控制的算法和网络基础设施
  • 批准号:
    1514550
  • 财政年份:
    2015
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Continuing Grant
CyberSEES: Type 2: Computing and Visualizing Optimal Policies for Ecosystem Management
Cyber​​SEES:类型 2:计算和可视化生态系统管理的最佳策略
  • 批准号:
    1331932
  • 财政年份:
    2013
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant
Collaborative Research: AVATOL - Next Generation Phenomics for the Tree of Life
合作研究:AVATOL - 生命之树的下一代表型组学
  • 批准号:
    1208272
  • 财政年份:
    2012
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant
II-EN: A compute cluster and software tools for Monte-Carlo methods in artificial intelligence
II-EN:人工智能中蒙特卡罗方法的计算集群和软件工具
  • 批准号:
    0958482
  • 财政年份:
    2010
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Sustainability: Computational Methods for a Sustainable Environment, Economy, and Society
合作研究:计算可持续性:可持续环境、经济和社会的计算方法
  • 批准号:
    0832804
  • 财政年份:
    2008
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Continuing Grant
RI: Machine Learning for Robust Recognition of Invertebrate Specimens in Ecological Science
RI:机器学习在生态科学中对无脊椎动物标本的鲁棒识别
  • 批准号:
    0705765
  • 财政年份:
    2007
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant
Off-the-shelf Learning Algorithms for Structural Supervised Learning
用于结构监督学习的现成学习算法
  • 批准号:
    0307592
  • 财政年份:
    2003
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Continuing Grant
SGER: Exploiting Contextual Knowledge to Design Input Representations for Machine Learning
SGER:利用上下文知识设计机器学习的输入表示
  • 批准号:
    0335525
  • 财政年份:
    2003
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant
Student Participant Support for the International Conference on Machine Learning 2003
2003 年国际机器学习会议的学生参与者支持
  • 批准号:
    0331758
  • 财政年份:
    2003
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Donnan理论的非对称吸附ICP-CDI体系构建及其除盐机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道F.prausnitzii通过FXR对抗NF-κB抑制CDI炎症的机制研究
  • 批准号:
    81900472
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
院内艰难梭菌感染(CDI)快速一体化检测技术的研究
  • 批准号:
    61701176
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
卵黄抗体(IgY)对艰难梭菌感染的诊断、防治作用及机理研究
  • 批准号:
    81160051
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    地区科学基金项目
溶藻弧菌菌落相变关键基因cdgC的功能和调控机制研究
  • 批准号:
    30972273
  • 批准年份:
    2009
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目

相似海外基金

CDI-Type I: Collaborative Research: High-Dimensional Phase-Space Subdivisions for Seismic Imaging
CDI-Type I:协作研究:地震成像的高维相空间细分
  • 批准号:
    1327658
  • 财政年份:
    2013
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI Type II: Dynamics and Control of Cardiac Tissue
合作研究:CDI II 型:心脏组织的动力学和控制
  • 批准号:
    1341128
  • 财政年份:
    2012
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: First-Principles Based Control of Multi-Scale Meta-Material Assembly Processes
合作研究:CDI-Type II:基于第一原理的多尺度超材料组装过程控制
  • 批准号:
    1124648
  • 财政年份:
    2011
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI Type-1: A Computer Framework for Modeling Complex Pattern Formation
合作研究:CDI Type-1:复杂模式形成建模的计算机框架
  • 批准号:
    1124665
  • 财政年份:
    2011
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: Probing Complex Dynamics of Small Interfering RNA (siRNA) Transfection by Petascale Simulations and Network Analysis
合作研究:CDI-Type II:通过 Petascale 模拟和网络分析探索小干扰 RNA (siRNA) 转染的复杂动力学
  • 批准号:
    1124962
  • 财政年份:
    2011
  • 资助金额:
    $ 98.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了