Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
基本信息
- 批准号:NE/Y001338/1
- 负责人:
- 金额:$ 64.08万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2026
- 资助国家:英国
- 起止时间:2026 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As our planet warms the ice cover shrinks, a process that transfers water from land to ocean and thereby raises sea level. The result, which could ultimately raise global sea level by 10s of metres, seems intuitively obvious. However, in the case of the Antarctic Ice Sheet, the processes at work are less than obvious. The atmosphere over the ice sheet is too cold to drive significant melting, so all the snow that falls in the interior is returned to the ocean as ice that only melts once it is afloat. The cold atmosphere creates cold surface waters, so most of the heat that melts the ice comes from deep within the ocean's interior. As it melts the floating ice from underneath, the thinning of the so-called ice shelves allows ice to flow off the land more rapidly, hence raising sea level.So, the underlying process is clear, but why should it drive a loss of ice from Antarctica as the climate warms? The waters that melt the ice are too deep in the ocean to feel atmospheric warming. However, as the atmosphere warms the circulation patterns change, influencing the winds that drive the ocean currents, and that delivers more of the deep warm water to the ice. Understanding how the processes work has been challenging. It is not immediately obvious why a change in the winds should deliver more, rather than less, warm water to the ice. Nevertheless, observation and modelling give us a consistent answer and our understanding of the processes grows as we focus our research on key unknowns.However, there is another puzzle that has received much less attention to date. More warm water leads to more rapid melting of the ice shelves, they thin and the flow of ice off the land accelerates. That acceleration of the flow delivers more ice to the ice shelves, and they should therefore start to grow, or at least thin less rapidly, unless the ocean heat delivery continues to grow. Until recently it was assumed that that is exactly what was happening, but as our record of ocean observations has lengthened, we have seen decadal cycles of warming and cooling. Why then should the ice shelves continue to thin?The answer must lie in the way in which the thinning of the ice shelves themselves affects the melt rate. Again, it is not immediately clear why the change in the ice should increase rather than decrease the melt. However, in this case observation of the key processes is exceptionally difficult because they take place beneath 100s or even 1000s of metres of ice.That is the challenge we will address with this project, by sending an autonomous submarine beneath the ice to make the critical measurements of the ocean, including the temperature of the water and the currents. Those direct observations of the ocean beneath the ice will allow us to verify that the ocean models we use to simulate the processes are correct, or to improve them if they are not.This will not be the first time such measurements have been made, but the new observations will differ in two important respects from the very few that have been made in the past. Some will be repeats of earlier measurements, so we will have observations from before and after a significant change in the extent of the ice shelf. Thus, we can directly answer the question of what change in the ocean circulation accompanied the change in shape of the ice cover. Other observations will target regions where the ice was grounded until recently. Because radar signals penetrate ice, but not seawater, we are able to map the topography only when the ice rests on the land and not when it is afloat. Thus, we paradoxically know the geometry of newly formed ocean cavities with much greater accuracy than we do the cavities that have been there since humans first explored the south polar regions. Our ability to understand the links between cavity geometry and ocean circulation is therefore enhanced in the newly opened cavities that are among the targets of our field campaign.
随着地球变暖,冰盖缩小,这一过程将水从陆地转移到海洋,从而导致海平面上升。其结果似乎直观地显而易见,最终可能使全球海平面上升数十米。然而,就南极冰盖而言,起作用的过程并不那么明显。冰盖上的大气太冷,无法导致明显的融化,因此所有落在内部的雪都会以冰的形式返回海洋,只有在漂浮时才会融化。寒冷的大气造成寒冷的表层海水,因此融化冰的大部分热量来自海洋内部深处。当它从下面融化浮冰时,所谓的冰架变薄使得冰更快地从陆地上流走,从而提高海平面。所以,潜在的过程很清楚,但为什么它会导致冰的损失随着气候变暖,来自南极洲?融化冰的海水太深,无法感受到大气变暖。然而,随着大气变暖,环流模式发生变化,影响驱动洋流的风,并将更多的深层温水输送到冰上。了解这些流程的工作原理一直具有挑战性。目前还不清楚为什么风向的变化会向冰层输送更多而不是更少的温水。尽管如此,观察和建模为我们提供了一致的答案,并且随着我们将研究重点放在关键的未知因素上,我们对过程的理解也会不断加深。然而,还有另一个难题迄今为止受到的关注要少得多。更多温暖的水导致冰架更快融化,冰架变薄,冰离开陆地的速度加快。水流的加速向冰架输送了更多的冰,因此它们应该开始增长,或者至少变薄得慢一些,除非海洋热量输送继续增长。直到最近,人们还认为这正是正在发生的事情,但随着我们对海洋观测记录的延长,我们已经看到了十年间的变暖和变冷循环。那么为什么冰架会继续变薄呢?答案一定在于冰架变薄本身影响融化速度的方式。同样,目前还不清楚为什么冰的变化会增加而不是减少融化。然而,在这种情况下,观察关键过程是异常困难的,因为它们发生在数百米甚至数千米的冰层之下。这就是我们在这个项目中要解决的挑战,通过在冰层下派遣一艘自主潜艇来进行关键的观测。海洋测量,包括水温和洋流。对冰下海洋的直接观察将使我们能够验证用于模拟过程的海洋模型是否正确,如果不正确,则可以对其进行改进。这不是第一次进行此类测量,但是新的观察结果将在两个重要方面与过去的少数观察结果有所不同。有些将是早期测量的重复,因此我们将获得冰架范围发生重大变化之前和之后的观测结果。这样,我们就可以直接回答海洋环流随着冰盖形状的变化而发生什么变化的问题。其他观测将针对直到最近冰才接地的区域。由于雷达信号可以穿透冰层,但不能穿透海水,因此我们只能在冰层位于陆地上而不是漂浮在水面上时才能绘制地形图。因此,矛盾的是,我们对新形成的海洋空洞的几何形状的了解,比我们对自人类首次探索南极地区以来就存在的空洞的几何形状的了解要高得多。因此,我们了解空腔几何形状与海洋环流之间联系的能力在新开放的空腔中得到了增强,这些空腔是我们实地活动的目标之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Jenkins其他文献
Tropical forcing of Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica
南极洲西部阿蒙森海湾环极深水流入和流出冰川变薄的热带强迫
- DOI:
10.3189/2012aog60a110 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:2.9
- 作者:
E. Steig;Q. Ding;D. Battisti;Adrian Jenkins - 通讯作者:
Adrian Jenkins
Dynamics of gas near the Galactic Centre
银河系中心附近的气体动力学
- DOI:
10.1093/mnras/270.3.703 - 发表时间:
1994-10-01 - 期刊:
- 影响因子:4.8
- 作者:
Adrian Jenkins;J. Binney - 通讯作者:
J. Binney
Polarization of radio waves transmitted through Antarctic ice shelves
通过南极冰架传输的无线电波的偏振
- DOI:
10.3189/172756402781817572 - 发表时间:
2002 - 期刊:
- 影响因子:2.9
- 作者:
C. Doake;H. Corr;Adrian Jenkins - 通讯作者:
Adrian Jenkins
Modeling the vertical structure of the ice shelf–ocean boundary current under supercooled condition with suspended frazil ice processes: A case study underneath the Amery Ice Shelf, East Antarctica
模拟冰架的垂直结构——过冷条件下的海洋边界流以及悬浮的碎冰过程:东南极洲阿默里冰架下方的案例研究
- DOI:
10.1016/j.ocemod.2020.101712 - 发表时间:
2020 - 期刊:
- 影响因子:3.2
- 作者:
Chen Cheng;Adrian Jenkins;Zhaomin Wang;Chengyan Liu - 通讯作者:
Chengyan Liu
Open Research Online Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica
南极洲阿蒙森海陆架断裂处的开放在线海洋学观测研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
D. P. Walker;Adrian Jenkins;K. Assmann;D. Shoosmith;M. Brandon - 通讯作者:
M. Brandon
Adrian Jenkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adrian Jenkins', 18)}}的其他基金
The influence of ocean circulation on local biogeochemistry and melting tidewater glaciers in northern Baffin Bay
海洋环流对巴芬湾北部当地生物地球化学和潮水冰川融化的影响
- 批准号:
NE/X008304/1 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Research Grant
Ocean Forcing of Ice Sheet Evolution in the Marine Basins of East Antarctica
东南极洲海洋盆地冰盖演化的海洋强迫
- 批准号:
NE/L007037/1 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
Research Grant
Drivers of Oceanic Change in the Amundsen Sea (DeCAdeS)
阿蒙森海海洋变化的驱动因素 (DeCAdeS)
- 批准号:
NE/T012803/1 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
Research Grant
Ocean circulation and melting beneath the ice shelves of the south-eastern Amundsen Sea
阿蒙森海东南部冰架下的海洋环流和融化
- 批准号:
NE/J005770/1 - 财政年份:2013
- 资助金额:
$ 64.08万 - 项目类别:
Research Grant
Ocean2Ice: Processes and variability of ocean heat transport toward ice shelves in the Amundsen Sea Embayment
Ocean2Ice:阿蒙森海湾冰架海洋热传输的过程和变化
- 批准号:
NE/J005746/1 - 财政年份:2013
- 资助金额:
$ 64.08万 - 项目类别:
Research Grant
Multi-scale modelling of the ocean beneath ice shelves
冰架下海洋的多尺度建模
- 批准号:
NE/G018146/1 - 财政年份:2010
- 资助金额:
$ 64.08万 - 项目类别:
Research Grant
Ocean Circulation and Ice Shelf Melting on the Amundsen Sea Continental Shelf
阿蒙森海大陆架上的海洋环流和冰架融化
- 批准号:
NE/G001367/1 - 财政年份:2008
- 资助金额:
$ 64.08万 - 项目类别:
Research Grant
相似国自然基金
基于进化算法的云冷杉针阔混交林多目标经营规划研究
- 批准号:32301582
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脓肿分枝杆菌耐药基因的进化机制研究
- 批准号:32300507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向超大规模多目标的进化迁移优化算法研究及应用
- 批准号:62306180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于杂交育种协同进化蚁群算法的工业大数据特征选择研究
- 批准号:62376089
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
北极鳕科鱼类食性适应性进化研究
- 批准号:32370565
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
- 批准号:
NE/Y000811/1 - 财政年份:2026
- 资助金额:
$ 64.08万 - 项目类别:
Research Grant
URoL:EN: Integrating paleogenomics, ecology, and geology to predict organism-environment coupled evolution during rapid warming and ice sheet retreat
URoL:EN:整合古基因组学、生态学和地质学来预测快速变暖和冰盖退缩期间的生物-环境耦合演化
- 批准号:
2221988 - 财政年份:2023
- 资助金额:
$ 64.08万 - 项目类别:
Standard Grant
The Evolution of Polar Climates: Forcings, Feedbacks, and Coupled Atmosphere-Ocean-Ice Dynamics
极地气候的演变:强迫、反馈和耦合的大气-海洋-冰动力学
- 批准号:
RGPIN-2019-07211 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Discovery Grants Program - Individual
A paleoclimate reanalysis of the coupled Greenland Ice Sheet--climate evolution during the Last Interglacial
格陵兰冰盖耦合的古气候再分析--末次间冰期气候演化
- 批准号:
2202667 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Standard Grant
The Evolution of Polar Climates: Forcings, Feedbacks, and Coupled Atmosphere-Ocean-Ice Dynamics
极地气候的演变:强迫、反馈和耦合的大气-海洋-冰动力学
- 批准号:
RGPIN-2019-07211 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Discovery Grants Program - Individual