Multivariate Nonparametric Methodology Studies

多元非参数方法研究

基本信息

  • 批准号:
    0204723
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2005-10-31
  • 项目状态:
    已结题

项目摘要

Proposal ID: DMS-0204723PI: David ScottTitle: Multivariate nonparametric methodology studiesThe investigators will study new nonparametric methodology focusing on the mid-range and high-range dimensions to better understand data modeling, the curse of dimensionality, and problems associated with massive data sets in multivariate regression and density estimation as well as closely related problems in clustering, mixtures, pattern recognition, and dimension reduction. A new data-based parametric estimation algorithm, based upon integrated squared error, will be investigated for its flexibility and robustness. By applying the criterion to the fitting of local polynomials, a new robust nonparametric regression algorithm can be proposed, which will be applied to automatic detection of hundreds of overlapping tracks in subatomic detector experiments. This project will examine semiparametric models for density estimation that can work better than ordinary nonparametric algorithms, extending feasibility by several extra dimensions. Of special interest, this algorithm can be used to fit subsets of a full mixture model. Applications include regression, image processing, clustering, outlier detection, density estimation, and visualization. The project will extend work on spatial modeling and the combination of multiple data surveys into useful data modeling and maps of conditional estimators of factors and their covariates. Currently, simultaneous mapping of variables is difficult to interpret, due to the availability of data only in discrete spatial areas (e.g. census tracts) and cross-tabulation of the two variables of interest. By constructing a smooth map of one variable as a second variable varies, a more faithful and accurate understanding of the spatial relationship may be obtained.Nonparametric methodology is widely used in one and two dimensions, but less so in higher dimensions. This research focuses on the mid-range and high-range dimensions and provides a deeper understanding of the implications to data modeling of the curse of dimensionality and problems associated with massive data sets. Particular emphasis will be given to multivariate regression and density estimation problems, and closely related applications such as clustering, mixture estimation, pattern recognition, and dimension reduction. This proposal examines new points of view, especially related to locally adaptive and spatial estimation, as well as some recent extensions of nonparametric criteria to parametric problems. The new parametric approach has potential for new nonparametric formulations and applications. At a recent National Research Council workshop, numerous scientists identified critical statistical needs in their work with massive data sets: alternatives to principal components, specialized visualization tools for exploring massive data, better clustering algorithms, and techniques for handling nonstationary data. Results from this research directly impact three of these four critical opportunities. This program represents a comprehensive and long-term attack on a host of important data analytic problems in multivariate estimation. The results will be of long-term theoretical interest and will provide near-term solutions to real-world problems.
提案 ID:DMS-0204723PI:David Scott 标题:多元非参数方法研究研究人员将研究新的非参数方法,重点关注中范围和高范围维度,以更好地理解数据建模、维数灾难以及与海量数据集相关的问题。多元回归和密度估计以及聚类、混合、模式识别和降维中密切相关的问题。将研究一种基于积分平方误差的新的基于数据的参数估计算法的灵活性和鲁棒性。通过将该准则应用于局部多项式的拟合,可以提出一种新的鲁棒非参数回归算法,该算法将应用于亚原子探测器实验中数百个重叠轨迹的自动检测。该项目将研究用于密度估计的半参数模型,该模型比普通非参数算法效果更好,从而通过几个额外的维度扩展了可行性。特别有趣的是,该算法可用于拟合完全混合模型的子集。应用包括回归、图像处理、聚类、异常值检测、密度估计和可视化。该项目将把空间建模和多个数据调查的组合工作扩展到有用的数据建模和因素及其协变量的条件估计图。 目前,由于数据仅在离散空间区域(例如人口普查区)和两个感兴趣的变量的交叉制表中可用,因此变量的同步映射很难解释。 通过构建一个变量随第二个变量变化的平滑映射,可以获得对空间关系的更忠实和准确的理解。非参数方法在一维和二维中广泛使用,但在更高维度中应用较少。这项研究重点关注中范围和高范围的维度,并提供对维度灾难和与海量数据集相关问题的数据建模的影响的更深入的理解。将特别强调多元回归和密度估计问题,以及密切相关的应用,例如聚类、混合估计、模式识别和降维。该提案研究了新的观点,特别是与局部自适应和空间估计相关的观点,以及非参数标准对参数问题的一些最新扩展。新的参数方法具有新的非参数公式和应用的潜力。在最近的国家研究委员会研讨会上,许多科学家确定了海量数据集工作中的关键统计需求:主成分的替代方案、用于探索海量数据的专用可视化工具、更好的聚类算法以及处理非平稳数据的技术。这项研究的结果直接影响这四个关键机会中的三个。该程序代表了对多元估计中许多重要数据分析问题的全面和长期的攻击。研究结果将具有长期的理论意义,并将为现实世界的问题提供近期的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Scott其他文献

Continuous extradural infusion of ropivacaine for prevention of postoperative pain after major orthopaedic surgery.
持续硬膜外输注罗哌卡因用于预防大型骨科手术后的术后疼痛。
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    G. Turner;D. Blake;M. Buckland;D. Chamley;P. Dawson;C. Goodchild;J. Mezzatesta;David Scott;A. Sultana;S. Walker;M. Hendrata;P. Mooney;M. Armstrong
  • 通讯作者:
    M. Armstrong
The Discursive Construct of Virtual Angels, Temples, and Religious Worship: Mormon Theology and Culture in Second Life
虚拟天使、寺庙和宗教崇拜的话语建构:第二人生中的摩门教神学和文化
Buying time for better decision-making: the impact of home based rehabilitation on frail older people
为更好的决策争取时间:家庭康复对体弱老年人的影响
  • DOI:
    10.2174/1874943700801010005
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Scott;M. Donnelly
  • 通讯作者:
    M. Donnelly
The Great Power ‘Great Game’ between India and China: ‘The Logic of Geography’
  • DOI:
    10.1080/14650040701783243
  • 发表时间:
    2008-02
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    David Scott
  • 通讯作者:
    David Scott
Are we underestimating the potential of neuroactive drugs to augment neuromotor function in sarcopenia?
我们是否低估了神经活性药物增强肌肉减少症神经运动功能的潜力?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lucas B.R. Orssatto;Jacob R. Thorstensen;David Scott;Robin M Daly
  • 通讯作者:
    Robin M Daly

David Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Scott', 18)}}的其他基金

Doctoral Dissertation Research: Comparing Multi-Scalar Claims for Redress and Reparation
博士论文研究:比较多标量的补救和赔偿索赔
  • 批准号:
    1823901
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
17ALERT bid: A new multi-wavelength analytical ultracentrifuge for the study of biomolecular interactions
17ALERT bid:用于研究生物分子相互作用的新型多波长分析超速离心机
  • 批准号:
    BB/R013411/1
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Multivariate Nonparametric Methodology Studies
多元非参数方法研究
  • 批准号:
    0907491
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fluorescence Optics for the Analytical Ultracentrifuge
用于分析超速离心机的荧光光学器件
  • 批准号:
    BB/F011156/1
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Multivariate Nonparametric Methodology Studies
多元非参数方法研究
  • 批准号:
    0505584
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Systemic Thread-Based Adaptation of an Electrical Engineering Curriculum
电气工程课程基于线程的系统改编
  • 批准号:
    0343297
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Digital Government: Collaborative Research: Quality Graphics for Federal Statistical Summaries
数字政府:协作研究:联邦统计摘要的高质量图形
  • 批准号:
    9983459
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Multivariate Nonparametric Methodology Studies
多元非参数方法研究
  • 批准号:
    9971797
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
SBIR Phase I: Novel Inexpensive Titanium Dioxide-Assisted Photocatalysis for Waste Stream Remediation
SBIR 第一阶段:用于废物流修复的新型廉价二氧化钛辅助光催化
  • 批准号:
    9861306
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Workshop on Advances in Smoothing: Bumps, Jumps, Clustering and Discrimination; May 11-15, 1997; Houston, Texas
数学科学:平滑进展研讨会:碰撞、跳跃、聚类和判别;
  • 批准号:
    9615912
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

土体参数非平稳分布特征表征与边坡可靠度分析方法研究
  • 批准号:
    42307264
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于新型容积卡尔曼滤波和非参数化滞回模型的震损结构损伤演化追踪与残余性能分析研究
  • 批准号:
    52378301
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
蚀刻用含氟分子激发动力学参数的快电子和非弹性X射线散射实验研究
  • 批准号:
    12334010
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
非平坦环境下SINS/DVL海底参数自主估计与广域导航方法研究
  • 批准号:
    62303157
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nonparametric depth-based methods for analyzing high-dimensional data. Applications to biomedical research
用于分析高维数据的基于非参数深度的方法。
  • 批准号:
    9807861
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
  • 批准号:
    8451617
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
  • 批准号:
    8248216
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
  • 批准号:
    8049180
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
  • 批准号:
    7628797
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了