Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
基本信息
- 批准号:8248216
- 负责人:
- 金额:$ 24.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-15 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdultAgeAnimalsBirth WeightChronic DiseaseChronic stressCollaborationsCollectionComplexDNA MethylationDataData AnalysesData SetDependenceDependencyDevelopmentDiabetes MellitusDietEnvironmentEnvironmental ExposureEpidemiologic StudiesEquationExposure toGenetic Predisposition to DiseaseGoalsGrowthHealthHormonesHumanHydrocortisoneIndividualInfantInfant HealthInfectious Pregnancy ComplicationsInfertilityInterventionLeadLettersLifeLiteratureLongitudinal StudiesLow Birth Weight InfantMeasuresMenstrual cycleMethodologyMethodsModelingMothersMotivationMultivariate AnalysisNutrientObesityOnset of illnessOutcomeOvulation PredictionOxidative StressPathway interactionsPatternPhysiologicalPostpartum PeriodPregnancyPregnancy OutcomePremenopauseProcessProgesteronePropertyProspective StudiesPsychosocial StressQuestionnairesRelative (related person)ReproductionReproductive HealthResearch PersonnelRiskRoleSmokingSmoking StatusSocietiesStatistical MethodsStressStructureTestingTimeVitaminsWeightWeight GainWomanWomen&aposs HealthWorkbasedisorder riskhigh riskimprovedindependent component analysisinnovationinsightinterestlifestyle factorsnovel strategiesnutritionobesity riskpredictive modelingprospectivereproductive functionreproductive hormoneresponsetooltrait
项目摘要
DESCRIPTION (provided by applicant): We propose to develop new statistical methods for improving analyses of multivariate, longitudinal and functional data from biomedical studies. There is increasing concern that exposures occurring during critical windows can lead to later adverse health effects, motivating prospective studies collecting detailed data on multiple time-varying exposures and health outcomes. New statistical methods are needed to efficiently discover critical windows and time-varying dependencies in such high-dimensional data sets, while limiting false discoveries. These methods may lead to fundamental new insights into mechanisms by which exposures induce adverse health effects, while also allowing for the development of targeted interventions and more accurate predictions of disease risk. Our goals include the following. 1. Develop nonparametric Bayes statistical methods for flexibly characterizing differences among individuals in functional data, such as trajectories over time in oxidative stress, reproductive hormones, nutrients and pregnancy weight. 2. Develop methods for flexibly predicting a health response based on multiple time- varying factors, while also estimating critical windows and discovering dynamic relationships between the different factors. 3. Apply these methods to assess relationships between oxidative stress, nutrients and reproductive hormones over the menstrual cycle accounting for the role of age, obesity and smoking. Also consider applications to identify patterns of pregnancy weight gain associated with short-term infant health outcomes. PUBLIC HEALTH RELEVANCE: The development of adverse health conditions, such as infertility and diabetes, depends on the interaction between genetic predisposition and a variety of lifestyle factors, including diet and environmental exposures. Changes with age in these factors is an important determinate of risk, as critical windows can occur many years before disease onset. We provide the statistical tools necessary to identify critical windows of exposure in order to reduce risk through targeted interventions.
描述(由申请人提供):我们建议开发新的统计方法,以改进对生物医学研究的多变量、纵向和功能数据的分析。人们越来越担心,在关键窗口期间发生的暴露可能会导致以后的不良健康影响,这促使前瞻性研究收集有关多次随时间变化的暴露和健康结果的详细数据。需要新的统计方法来有效地发现此类高维数据集中的关键窗口和时变依赖性,同时限制错误发现。这些方法可能会对暴露引起不良健康影响的机制产生根本性的新见解,同时还可以制定有针对性的干预措施和更准确地预测疾病风险。我们的目标包括以下内容。 1. 开发非参数贝叶斯统计方法,以灵活地表征个体之间功能数据的差异,例如氧化应激、生殖激素、营养物质和妊娠体重随时间的变化轨迹。 2. 开发基于多个时变因素灵活预测健康反应的方法,同时估计关键窗口并发现不同因素之间的动态关系。 3. 应用这些方法来评估月经周期中氧化应激、营养物质和生殖激素之间的关系,以解释年龄、肥胖和吸烟的作用。还可以考虑应用以确定与短期婴儿健康结果相关的妊娠体重增加模式。公共卫生相关性:不孕症和糖尿病等不良健康状况的发生取决于遗传倾向和各种生活方式因素(包括饮食和环境暴露)之间的相互作用。这些因素随年龄的变化是风险的重要决定因素,因为关键窗口可能在疾病发作前许多年出现。我们提供必要的统计工具来确定关键的暴露窗口,以便通过有针对性的干预措施来降低风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Brian Dunson其他文献
David Brian Dunson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Brian Dunson', 18)}}的其他基金
Improving inferences on health effects of chemical exposures
改进对化学品暴露对健康影响的推断
- 批准号:
10753010 - 财政年份:2023
- 资助金额:
$ 24.08万 - 项目类别:
CRCNS: Geometry-based Brain Connectome Analysis
CRCNS:基于几何的脑连接组分析
- 批准号:
9788529 - 财政年份:2018
- 资助金额:
$ 24.08万 - 项目类别:
Structured nonparametric methods for mixtures of exposures
混合暴露的结构化非参数方法
- 批准号:
10112908 - 财政年份:2018
- 资助金额:
$ 24.08万 - 项目类别:
Structured nonparametric methods for mixtures of exposures
混合暴露的结构化非参数方法
- 批准号:
9883638 - 财政年份:2018
- 资助金额:
$ 24.08万 - 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
- 批准号:
8496781 - 财政年份:2009
- 资助金额:
$ 24.08万 - 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
- 批准号:
8092765 - 财政年份:2009
- 资助金额:
$ 24.08万 - 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
- 批准号:
7697425 - 财政年份:2009
- 资助金额:
$ 24.08万 - 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
- 批准号:
8293144 - 财政年份:2009
- 资助金额:
$ 24.08万 - 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
- 批准号:
8451617 - 财政年份:2009
- 资助金额:
$ 24.08万 - 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
- 批准号:
8049180 - 财政年份:2009
- 资助金额:
$ 24.08万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 24.08万 - 项目类别:
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
- 批准号:
10649741 - 财政年份:2023
- 资助金额:
$ 24.08万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 24.08万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 24.08万 - 项目类别:
Human-iPSC derived neuromuscular junctions as a model for neuromuscular diseases.
人 iPSC 衍生的神经肌肉接头作为神经肌肉疾病的模型。
- 批准号:
10727888 - 财政年份:2023
- 资助金额:
$ 24.08万 - 项目类别: