Spectral Geometry of Non-Compact Domains and Riemannian Manifolds
非紧域和黎曼流形的谱几何
基本信息
- 批准号:0100829
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for DMS - 0100829The principal investigator will study the spectral geometry of non-compactdomains and Riemannian manifolds in order to elucidate the geometriccontent of scattering poles. First, the PI will continue his study of thespectral geometry of hyperbolic manifolds and their perturbations. He willstudy resonances as functions on the deformation space of the underlyingdiscrete group, and define and analyze a determinant of the Laplacian.Secondly, the PI will study scattering theory for the wave equation ontwo-step nilpotent Lie groups and their quotients by discrete subgroups.New parametrices or the wave equation on the Heisenberg and Heisenberg-typegroups will be derived, and trace formula for certain quotients obtained.Riemannian submersion techniques of Gordon, Wilson, and others will be usedto obtain pairs and families of `isoscattering' manifolds which will helpdetermine the limits of geometric information which may be deduced from aknowledge of the scattering poles. Thirdly, the PI will study theisoscattering problem for exterior domains in Euclidean space.The fundamental problem of spectral geometry is to elucidate thegeometric content of the Laplace spectrum on a Riemannian manifold.For so-called scattering manifolds, the eigenvalues of the Laplaciantogether with scattering resonances constitute the spectral data for themanifold. Elucidating the geometric content of such spectral dataadvances our understanding of quantization, produces new analytic toolsfor the study of geometric objects, and provides insight into inverseproblems of a more `applied' nature where the eigenvalues and scatteringpoles are measurable quantities. The present work aims to begin withgeometrically natural examples where techniques of Lie theory, automorphicfunctions, and harmonic analysis may be used, and progress to harderproblems such as target identification by radar where such techniques are not available but the underlying mathematical problems are very similar.
DMS -0100829的摘要主要研究者将研究非紧密含量和riemannian歧管的光谱几何形状,以阐明散射杆的几何表现。首先,PI将继续研究双曲线歧管及其扰动的几何形状。 He willstudy resonances as functions on the deformation space of the underlyingdiscrete group, and define and analyze a determinant of the Laplacian.Secondly, the PI will study scattering theory for the wave equation ontwo-step nilpotent Lie groups and their quotients by discrete subgroups.New parametrices or the wave equation on the Heisenberg and Heisenberg-typegroups将被得出的某些商。 Thirdly, the PI will study theisoscattering problem for exterior domains in Euclidean space.The fundamental problem of spectral geometry is to elucidate thegeometric content of the Laplace spectrum on a Riemannian manifold.For so-called scattering manifolds, the eigenvalues of the Laplaciantogether with scattering resonances constitute the spectral data for themanifold. 阐明这种频谱数据吸收的几何含量使我们对量化的理解,为研究几何对象的研究产生新的分析工具,并提供对更“应用”性质的逆问题的见识,在该逆问题中,特征值和散射柱是可衡量的数量。目前的工作旨在从拼小的自然示例开始,在这些示例中,可以使用谎言理论,自动化功能和谐波分析的技术,并在无法获得此类技术但基本数学问题的雷达中进行诸如目标识别之类的硬问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Perry其他文献
The Management of University-Industry Collaborations Involving Empirical Studies of Software Enginee
涉及软件工程实证研究的产学合作管理
- DOI:
10.1007/978-1-84800-044-5_10 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
T. Lethbridge;Steve Lyon;Peter Perry - 通讯作者:
Peter Perry
Pastoralism and politics: reinterpreting contests for territory in Auckland Province, New Zealand, 1853–1864
- DOI:
10.1016/j.jhg.2007.10.001 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:
- 作者:
Vaughan Wood;Tom Brooking;Peter Perry - 通讯作者:
Peter Perry
Peter Perry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Perry', 18)}}的其他基金
Conference and Workshop: Scattering and Inverse-Scattering in Multi-Dimensions, May 16-23, 2014
会议和研讨会:多维散射和逆散射,2014 年 5 月 16-23 日
- 批准号:
1408891 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Inverse Scattering and Partial Differential Equations
逆散射和偏微分方程
- 批准号:
1208778 - 财政年份:2012
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Global Harmonic Analysis - June 2011
CBMS 数学科学区域会议 - 全球调和分析 - 2011 年 6 月
- 批准号:
1040927 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Spectral Problems in Geometry and Partial Differential Equations
几何和偏微分方程中的谱问题
- 批准号:
0710477 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Inverse Problems in Geometry and Partial Differential Equations
几何反问题和偏微分方程
- 批准号:
0408419 - 财政年份:2004
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Conference on Inverse Spectral Geometry, June 20-28, 2002, Lexington, Kentucky
逆谱几何会议,2002 年 6 月 20-28 日,肯塔基州列克星敦
- 批准号:
0207125 - 财政年份:2002
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Spectral Geometry of Compact Riemannian Manifolds and Kleinian Groups
数学科学:紧致黎曼流形和克莱因群的谱几何
- 批准号:
9707051 - 财政年份:1997
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Experiences for Undergraduates - Inverse Problems: Mathematics and Engineering
数学科学:本科生研究经历-反问题:数学与工程
- 批准号:
9424012 - 财政年份:1995
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Geometry and Inverse Problems
数学科学:谱几何和反问题
- 批准号:
9203529 - 财政年份:1992
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:42102149
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems
FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影
- 批准号:
2153561 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Comprehensive characterization of coronary atherosclerotic disease using photon-counting-detector dual-source CT and its impact on patient management
使用光子计数探测器双源 CT 全面表征冠状动脉粥样硬化疾病及其对患者管理的影响
- 批准号:
10391327 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Comprehensive characterization of coronary atherosclerotic disease using photon-counting-detector dual-source CT and its impact on patient management
使用光子计数探测器双源 CT 全面表征冠状动脉粥样硬化疾病及其对患者管理的影响
- 批准号:
10592395 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems
FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影
- 批准号:
1854204 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems
FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影
- 批准号:
1854299 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Standard Grant