Spectral Problems in Geometry and Partial Differential Equations
几何和偏微分方程中的谱问题
基本信息
- 批准号:0710477
- 负责人:
- 金额:$ 13.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will focus on three areas of spectral theory for partial differential equations: (1) resonances in geometric scattering, (2) harmonic analysis on two-step nilpotent Lie groups, and (3) inverse spectral methods in the theory of nonlinear dispersive equations. In the first project, the principle investigator will continue his work on spectral and scattering theory for asymptotically hyperbolic manifolds and complex manifolds, studying properties of scattering resonances and their relationship to underlying geometric invariants. In the second project, he will work toward understanding the asymptotic behavior of heat kernels and singularities of the wave trace for two-step nilpotent Lie groups. Nonlinear dispersive equations with singular initial data may be viewed, via the inverse scattering method, as linearized flows for the scattering data of a very singular potential. We hope to extend the inverse scattering picture for the KdV and mKdV equations to such singular data and obtain greater insight into these dynamical systems--by constructing the flow on Hilbert spaces of initial data which are singular but very natural from a dynamical point of view.Partial differential equations provide underlying mathematical models for such diverse physical phenomena as wave propagation and heat flow. An equally important part of any physical model is the geometry of the system it describes: for example, differently-shaped musical instruments produce sound waves with different frequencies, even though in all cases the production and propagation of waves is governed by the same differential equation. The first two projects above study the interaction between solutions of a certain partial differential equation and the geometry of the domain where the solutions are defined, and seek to relate quantifiable properties of the solutions to quantifiable properties of the underlying geometry. These projects are part of a larger effort in the mathematical community to understand "inverse problems" in which the geometry of a physical system is reconstructed from measurable data which are the solutions of a partial differential equation: seismology and medical imaging are among the areas of applied mathematics where such inverse problems occur. The third project is a contribution to the study of a class of equations arising in physics which describe the propagation of nonlinear waves by extending powerful solution methods to a richer set of data.
该项目将重点关注偏微分方程谱理论的三个领域:(1)几何散射中的共振,(2)两步幂零李群的调和分析,以及(3)非线性色散方程理论中的逆谱方法。在第一个项目中,首席研究员将继续研究渐近双曲流形和复流形的谱和散射理论,研究散射共振的性质及其与基础几何不变量的关系。在第二个项目中,他将致力于理解两步幂零李群的热核的渐近行为和波迹奇点。通过逆散射方法,具有奇异初始数据的非线性色散方程可以被视为非常奇异势的散射数据的线性化流。我们希望将 KdV 和 mKdV 方程的逆散射图扩展到此类奇异数据,并通过在初始数据的希尔伯特空间上构造流来获得对这些动力系统的更深入的了解,这些初始数据是奇异的,但从动力学角度来看非常自然偏微分方程为波传播和热流等不同的物理现象提供了基础数学模型。 任何物理模型的一个同样重要的部分是它所描述的系统的几何形状:例如,不同形状的乐器产生不同频率的声波,即使在所有情况下波的产生和传播都由相同的微分方程控制。上述前两个项目研究某个偏微分方程的解与定义解的域的几何形状之间的相互作用,并寻求将解的可量化属性与基础几何的可量化属性联系起来。这些项目是数学界为理解“反问题”所做的更大努力的一部分,其中物理系统的几何形状是根据可测量的数据重建的,这些数据是偏微分方程的解:地震学和医学成像属于以下领域:发生此类逆问题的应用数学。第三个项目是对物理学中出现的一类方程的研究的贡献,这些方程通过将强大的求解方法扩展到更丰富的数据集来描述非线性波的传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Perry其他文献
The Management of University-Industry Collaborations Involving Empirical Studies of Software Enginee
涉及软件工程实证研究的产学合作管理
- DOI:
10.1007/978-1-84800-044-5_10 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
T. Lethbridge;Steve Lyon;Peter Perry - 通讯作者:
Peter Perry
Peter Perry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Perry', 18)}}的其他基金
Conference and Workshop: Scattering and Inverse-Scattering in Multi-Dimensions, May 16-23, 2014
会议和研讨会:多维散射和逆散射,2014 年 5 月 16-23 日
- 批准号:
1408891 - 财政年份:2014
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Inverse Scattering and Partial Differential Equations
逆散射和偏微分方程
- 批准号:
1208778 - 财政年份:2012
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Global Harmonic Analysis - June 2011
CBMS 数学科学区域会议 - 全球调和分析 - 2011 年 6 月
- 批准号:
1040927 - 财政年份:2011
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Inverse Problems in Geometry and Partial Differential Equations
几何反问题和偏微分方程
- 批准号:
0408419 - 财政年份:2004
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Conference on Inverse Spectral Geometry, June 20-28, 2002, Lexington, Kentucky
逆谱几何会议,2002 年 6 月 20-28 日,肯塔基州列克星敦
- 批准号:
0207125 - 财政年份:2002
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Spectral Geometry of Non-Compact Domains and Riemannian Manifolds
非紧域和黎曼流形的谱几何
- 批准号:
0100829 - 财政年份:2001
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Geometry of Compact Riemannian Manifolds and Kleinian Groups
数学科学:紧致黎曼流形和克莱因群的谱几何
- 批准号:
9707051 - 财政年份:1997
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Experiences for Undergraduates - Inverse Problems: Mathematics and Engineering
数学科学:本科生研究经历-反问题:数学与工程
- 批准号:
9424012 - 财政年份:1995
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Geometry and Inverse Problems
数学科学:谱几何和反问题
- 批准号:
9203529 - 财政年份:1992
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
相似国自然基金
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
凸体几何学中的几何测度及其 Minkowski 问题研究
- 批准号:11871373
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
认证码的构造及其相关组合问题的研究
- 批准号:61179026
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
典型群几何学及相关的代数组合问题
- 批准号:19571024
- 批准年份:1995
- 资助金额:6.0 万元
- 项目类别:面上项目
分形几何学及其应用的若干问题
- 批准号:19071018
- 批准年份:1990
- 资助金额:1.4 万元
- 项目类别:面上项目
相似海外基金
Stability, Instability and Geometry in Applied Spectral Problems.
应用光谱问题中的稳定性、不稳定性和几何。
- 批准号:
1615418 - 财政年份:2016
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
Inverse Spectral Problems in Riemannian Geometry
黎曼几何中的反谱问题
- 批准号:
0072534 - 财政年份:2000
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: NSF/CBMS Regional Conference in the Mathematical Sciences--Spectral Problems in Geometry and Arithmetic--August18-22, 1997
数学科学:NSF/CBMS 数学科学区域会议——几何和算术中的谱问题——1997 年 8 月 18 日至 22 日
- 批准号:
9612075 - 财政年份:1996
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Inverse Problems in Spectral Geometry
美法合作研究:谱几何反问题
- 批准号:
9415803 - 财政年份:1995
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9404298 - 财政年份:1994
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant