FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems

FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影

基本信息

  • 批准号:
    2153561
  • 负责人:
  • 金额:
    $ 53.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Complex, time-evolving systems are ubiquitous in nature and society, with examples ranging from the Earth's weather and climate, to the function and dynamics of biomolecules, and the behavior of markets and economies. Despite their apparent complexity, many such systems exhibit a form of underlying organized structure (``building blocks''), whose discovery would enhance our ability to understand and predict a wide range of phenomena. The goal of this project is to develop the next generation of mathematical and algorithmic tools that can harness the information content of large datasets acquired from experiments and observations to create coherent representations of complex systems, and use these representations to perform prediction, and ultimately, control. These objectives will be addressed through a novel combination of mathematical techniques, bridging dynamical systems theory and differential geometry with machine learning and data science. The newly developed techniques will be tested and applied in real-world problems through collaboration with domain experts in the areas of climate dynamics, space physics, and condensed matter physics. The project will also contribute to STEM workforce and curricular development through training of students and postdoctoral researchers, and design of multi-disciplinary lecture courses. The modern scientific method is undergoing an evolutionary change wherein large data sets and machine learning algorithms have the potential to outperform classical first-principles approaches for certain complex phenomena. For these tools to be accepted by the scientific community, a rigorous mathematical framework is required to match the verifiability and quantifiability of the classical modeling approach. Recently, a new tool called the diffusion forecast has been developed based on provably consistent estimators, which learn the unknown structure of a large class of stochastic dynamical systems on manifolds. Moreover, the results of many published numerical experiments indicate that this framework can be applied far beyond the restricted context of the current theory. In particular, the evidence suggests that the consistency proofs can be extended to non-autonomous projections of complex systems, deterministic chaotic systems represented by non-compact operators, non-smooth domains such as fractal attractors, and even generalized tensors on metric-measure spaces. This project will undertake a rigorous mathematical unification of these problems, leading to transformative advances in our ability to model and describe complex systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂的,随着时间的推移系统在自然和社会上无处不在,范围从地球的天气和气候到生物分子的功能和动态以及市场和经济的行为。尽管它们明显复杂,但许多这样的系统表现出一种基本的有组织结构(````构建'''')的形式,它们的发现将增强我们理解和预测广泛现象的能力。该项目的目的是开发下一代的数学和算法工具,这些工具可以利用从实验和观察值中获取的大型数据集的信息内容,以创建复杂系统的连贯表示,并使用这些表示形式执行预测,并最终控制控制。这些目标将通过数学技术,桥接动力学系统理论和机器学习和数据科学的差异几何形状的新颖组合来解决。新开发的技术将通过与气候动态,空间物理和凝结物理物理学领域的领域专家的合作进行测试和应用。该项目还将通过培训学生和博士后研究人员以及多学科讲座课程的设计来为STEM劳动力和课程发展做出贡献。 现代的科学方法正在经历进化变化,其中大型数据集和机器学习算法有可能超过经典的第一原理方法,以实现某些复杂现象。 要使这些工具被科学界接受,需要一个严格的数学框架来匹配经典建模方法的可验证性和量化性。 最近,基于可证明的一致估计器开发了一种称为“扩散预测”的新工具,该估计量学习了歧管上一类随机动力学系统的未知结构。 此外,许多已发表的数值实验的结果表明,该框架可以远远超出当前理论的受限背景。 特别是,证据表明,一致性证明可以扩展到复杂系统的非自主投影,由非紧凑型操作员,非平滑域(例如分形吸引子)所代表的确定性混沌系统,甚至是公认的张量。该项目将对这些问题进行严格的数学统一,从而导致我们建模和描述复杂系统的能力的变革性进步。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的评估评估标准来通过评估来支持的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of the Madden–Julian Oscillation With Data‐Driven Koopman Spectral Analysis
  • DOI:
    10.1029/2023gl102743
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    B. Lintner;D. Giannakis;M. Pike;J. Slawinska
  • 通讯作者:
    B. Lintner;D. Giannakis;M. Pike;J. Slawinska
Learning to Forecast Dynamical Systems from Streaming Data
  • DOI:
    10.1137/21m144983x
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Giannakis;Amelia Henriksen;J. Tropp;Rachel A. Ward
  • 通讯作者:
    D. Giannakis;Amelia Henriksen;J. Tropp;Rachel A. Ward
Embedding classical dynamics in a quantum computer
  • DOI:
    10.1103/physreva.105.052404
  • 发表时间:
    2022-05-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Giannakis, Dimitrios;Ourmazd, Abbas;Slawinska, Joanna
  • 通讯作者:
    Slawinska, Joanna
On Harmonic Hilbert Spaces on Compact Abelian Groups
紧阿贝尔群上的调和希尔伯特空间
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitrios Giannakis其他文献

Revealing trends and persistent cycles of non-autonomous systems with autonomous operator-theoretic techniques
利用自主算子理论技术揭示非自主系统的趋势和持续循环
  • DOI:
    10.1038/s41467-024-48033-6
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    G. Froyland;Dimitrios Giannakis;Edoardo Luna;J. Slawinska
  • 通讯作者:
    J. Slawinska
Correction to: On Harmonic Hilbert Spaces on Compact Abelian Groups
更正:关于紧阿贝尔群上的调和希尔伯特空间
An algebra structure for reproducing kernel Hilbert spaces
用于再现核希尔伯特空间的代数结构
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimitrios Giannakis;Michael R. Montgomery
  • 通讯作者:
    Michael R. Montgomery

Dimitrios Giannakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitrios Giannakis', 18)}}的其他基金

FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems
FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影
  • 批准号:
    1854383
  • 财政年份:
    2019
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
EAGER: Data-driven Koopman Operator Techniques for Chaotic and Non-Autonomous Dynamical Systems
EAGER:用于混沌和非自主动力系统的数据驱动的 Koopman 算子技术
  • 批准号:
    1842538
  • 财政年份:
    2018
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
Novel Kernel Methods for Data Analysis in Dynamical Systems: Applications to Dimension Reduction and Prediction in Atmospheric and Oceanic Dynamics
动力系统数据分析的新核方法:在大气和海洋动力学中的降维和预测应用
  • 批准号:
    1521775
  • 财政年份:
    2015
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了