Inverse Problems in Geometry and Partial Differential Equations
几何反问题和偏微分方程
基本信息
- 批准号:0408419
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0408419Title: Inverse problems in geometry and partial differential equationsPI: Peter A. Perry, University of KentuckyABSTRACTThis project involves inverse spectral and scattering theory in three areasof mathematical investigation: (1) the spectral theory of two-stepnilpotent groups and compact nilmanifolds, (2) the inverse resonance problem forexterior domains and scattering manifolds, and (3) inverse scattering forsingular potentials with applications to nonlinear dispersive equations.Two-step nilpotent lie groups play an important role in pure mathematics as models of sub-Riemannian geometry and as a rich source of examples ofmanifolds with identical Laplace spectra but distinct geometries; adetailed investigation of the trace formula for these manifolds will becarried out using analysis on nilpotent Lie groups. Resonances arediscrete scattering data for non-compact manifolds analogous to theeigenvalues of the Laplacian on a compact manifold; the inverse resonanceproblem will be investigated in the contexts of conformal andasymptotically flat geometries, and invariants such as the determinant willbe studied. Nonlinear dispersive equations with singular initial data maybe viewed, via the inverse scattering method, as linearized flows for thescattering data of a very singular potential. We hope to extend the inversescattering picture for the KdV and mKdV equations to such singular data andobtain greater insight into these dynamical systems--by constructing theflow on Hilbert spaces of initial data which are singular but very naturalfrom a dynamical point of view. Inverse spectral theory is the mathematical discipline thatunderlies important applications of mathematics to medical imaging,geophysical prospection, non-destructive testing, and many other areas.In these applications, properties of a physicalsystem (a human body, the earth, or an industrial material) are deduced from its response to externally imposed stimuli (electromagneticradiation, seismic waves, or ultrasound). The properties deduced may loosely be described as the "geometry" of the system and its response to external stimuli the "spectral data" (or "normalmodes"). A deep result of the study of completely integrable systems is that certain physical phenomena, such as the propagation of waves inshallow water, can be solved using an associated inverse spectral problem.Thus advances in inverse spectral theory lead to a better understanding ofhow such nonlinear waves propagate. The impact of this project will be twofold: first, it will elucidate, by studying carefully chosen geometric contexts, the relation between speectrum and geometry. Secondly, it will deepen our understanding of nonlinear dispersive waves by extending tools of inverse scattering theory to study nonlinear wave propagation with very singular waves.
DMS-0408419TITLE:几何和部分微分方程的逆问题PI:彼得·A·佩里,肯塔基亚比亚大学大学项目涉及数学研究的三个领域的逆频谱和散射理论:(1)两步性的nilmanifolds和compact nilmanifolds的光谱,(1)歧管和(3)在非线性色散方程中应用的逆散射外向电势。两次尼尔氏谎言群在纯数学中作为亚里曼尼亚几何形状的模型以及具有相同的laplace laplace paspectra的模型,在纯数学中起着重要作用;对这些流形的痕量公式进行了研究,将使用对nilpotent Lie组的分析来解决。共振的非紧密歧管的弧形散射数据类似于拉普拉斯式的laplacian的散射数据。逆谐振问题将在共形和响应平坦的几何形状以及所研究的决定因素等不变性的背景下进行研究。具有奇异初始数据的非线性色散方程,可以通过反向散射方法查看,作为对非常奇异电位的散散数据的线性化流量。我们希望通过在初始数据的希尔伯特(Hilbert)空间上构造奇特的数据流,从而将KDV和MKDV方程的反截面图片扩展到此类动力学系统的奇异数据,并对这些动态系统进行更大的见解,这些数据是奇异数据的Hilbert Space,这些数据是奇异但非常自然的,从动力学的角度来看。 Inverse spectral theory is the mathematical discipline thatunderlies important applications of mathematics to medical imaging,geophysical prospection, non-destructive testing, and many other areas.In these applications, properties of a physicalsystem (a human body, the earth, or an industrial material) are deduced from its response to externally imposed stimuli (electromagneticradiation, seismic waves, or ultrasound).推导的属性可能会宽松地描述为系统的“几何”及其对外部刺激的响应“光谱数据”(或“正常码”)。对完全集成系统的研究的深刻结果是,可以使用相关的逆频谱问题来解决某些物理现象,例如波浪的传播。 该项目的影响将是双重的:首先,它将通过研究精心选择的几何环境,Speectrum和几何形状之间的关系来阐明。其次,它将通过扩展逆散射理论的工具来研究非线性波传播,以非常奇异的波浪来加深我们对非线性分散波的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Perry其他文献
The Management of University-Industry Collaborations Involving Empirical Studies of Software Enginee
涉及软件工程实证研究的产学合作管理
- DOI:
10.1007/978-1-84800-044-5_10 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
T. Lethbridge;Steve Lyon;Peter Perry - 通讯作者:
Peter Perry
Pastoralism and politics: reinterpreting contests for territory in Auckland Province, New Zealand, 1853–1864
- DOI:
10.1016/j.jhg.2007.10.001 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:
- 作者:
Vaughan Wood;Tom Brooking;Peter Perry - 通讯作者:
Peter Perry
Peter Perry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Perry', 18)}}的其他基金
Conference and Workshop: Scattering and Inverse-Scattering in Multi-Dimensions, May 16-23, 2014
会议和研讨会:多维散射和逆散射,2014 年 5 月 16-23 日
- 批准号:
1408891 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Inverse Scattering and Partial Differential Equations
逆散射和偏微分方程
- 批准号:
1208778 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Global Harmonic Analysis - June 2011
CBMS 数学科学区域会议 - 全球调和分析 - 2011 年 6 月
- 批准号:
1040927 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Spectral Problems in Geometry and Partial Differential Equations
几何和偏微分方程中的谱问题
- 批准号:
0710477 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on Inverse Spectral Geometry, June 20-28, 2002, Lexington, Kentucky
逆谱几何会议,2002 年 6 月 20-28 日,肯塔基州列克星敦
- 批准号:
0207125 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Spectral Geometry of Non-Compact Domains and Riemannian Manifolds
非紧域和黎曼流形的谱几何
- 批准号:
0100829 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Geometry of Compact Riemannian Manifolds and Kleinian Groups
数学科学:紧致黎曼流形和克莱因群的谱几何
- 批准号:
9707051 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Research Experiences for Undergraduates - Inverse Problems: Mathematics and Engineering
数学科学:本科生研究经历-反问题:数学与工程
- 批准号:
9424012 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Geometry and Inverse Problems
数学科学:谱几何和反问题
- 批准号:
9203529 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
凸体几何学中的几何测度及其 Minkowski 问题研究
- 批准号:11871373
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
认证码的构造及其相关组合问题的研究
- 批准号:61179026
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
典型群几何学及相关的代数组合问题
- 批准号:19571024
- 批准年份:1995
- 资助金额:6.0 万元
- 项目类别:面上项目
分形几何学及其应用的若干问题
- 批准号:19071018
- 批准年份:1990
- 资助金额:1.4 万元
- 项目类别:面上项目
相似海外基金
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of convolution operators on symmetric spaces and its applications to integral geometry and inverse problems
对称空间上卷积算子的几何分析及其在积分几何和反问题中的应用
- 批准号:
21K03264 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Inverse Problems in Partial Differential Equations and Geometry
偏微分方程和几何中的反问题
- 批准号:
1900475 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual