FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems

FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影

基本信息

  • 批准号:
    1854299
  • 负责人:
  • 金额:
    $ 34.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Complex, time-evolving systems are ubiquitous in nature and society, with examples ranging from the Earth's weather and climate, to the function and dynamics of biomolecules, and the behavior of markets and economies. Despite their apparent complexity, many such systems exhibit a form of underlying organized structure (``building blocks''), whose discovery would enhance our ability to understand and predict a wide range of phenomena. The goal of this project is to develop the next generation of mathematical and algorithmic tools that can harness the information content of large datasets acquired from experiments and observations to create coherent representations of complex systems, and use these representations to perform prediction, and ultimately, control. These objectives will be addressed through a novel combination of mathematical techniques, bridging dynamical systems theory and differential geometry with machine learning and data science. The newly developed techniques will be tested and applied in real-world problems through collaboration with domain experts in the areas of climate dynamics, space physics, and condensed matter physics. The project will also contribute to STEM workforce and curricular development through training of students and postdoctoral researchers, and design of multi-disciplinary lecture courses. In particular, this project will support one graduate student at each of the three universities involved.The modern scientific method is undergoing an evolutionary change wherein large data sets and machine learning algorithms have the potential to outperform classical first-principles approaches for certain complex phenomena. For these tools to be accepted by the scientific community, a rigorous mathematical framework is required to match the verifiability and quantifiability of the classical modeling approach. Recently, a new tool called the diffusion forecast has been developed based on provably consistent estimators, which learn the unknown structure of a large class of stochastic dynamical systems on manifolds. Moreover, the results of many published numerical experiments indicate that this framework can be applied far beyond the restricted context of the current theory. In particular, the evidence suggests that the consistency proofs can be extended to non-autonomous projections of complex systems, deterministic chaotic systems represented by non-compact operators, non-smooth domains such as fractal attractors, and even generalized tensors on metric-measure spaces. This project will undertake a rigorous mathematical unification of these problems, leading to transformative advances in our ability to model and describe complex systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂的、随时间演变的系统在自然和社会中无处不在,例子包括从地球的天气和气候到生物分子的功能和动态,以及市场和经济的行为。尽管它们表面上很复杂,但许多此类系统都表现出某种形式的底层组织结构(“构建块”),其发现将增强我们理解和预测各种现象的能力。该项目的目标是开发下一代数学和算法工具,这些工具可以利用从实验和观察中获取的大型数据集的信息内容来创建复杂系统的连贯表示,并使用这些表示来执行预测,并最终控制。这些目标将通过数学技术的新颖组合、将动力系统理论和微分几何与机器学习和数据科学结合起来来实现。新开发的技术将通过与气候动力学、空间物理和凝聚态物理领域专家的合作进行测试并应用于现实世界的问题。该项目还将通过学生和博士后研究人员的培训以及多​​学科讲座课程的设计,为 STEM 劳动力和课程开发做出贡献。特别是,该项目将支持所涉及的三所大学中每所的一名研究生。现代科学方法正在经历一场进化变革,其中大数据集和机器学习算法有可能在某些复杂现象方面超越经典的第一原理方法。 为了让这些工具被科学界接受,需要一个严格的数学框架来匹配经典建模方法的可验证性和可量化性。 最近,基于可证明一致的估计器开发了一种称为扩散预测的新工具,它可以学习流形上一大类随机动力系统的未知结构。 此外,许多已发表的数值实验的结果表明,该框架的应用范围可以远远超出当前理论的限制范围。 特别是,证据表明一致性证明可以扩展到复杂系统的非自治投影、由非紧算子表示的确定性混沌系统、分形吸引子等非光滑域,甚至度量测度空间上的广义张量。该项目将对这些问题进行严格的数学统一,从而在我们建模和描述复杂系统的能力方面取得革命性的进步。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kernel Methods for Bayesian Elliptic Inverse Problems on Manifolds
  • DOI:
    10.1137/19m1295222
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Harlim;D. Sanz-Alonso;Ruiyi Yang
  • 通讯作者:
    J. Harlim;D. Sanz-Alonso;Ruiyi Yang
Graph-based prior and forward models for inverse problems on manifolds with boundaries
基于图的先验和前向模型,用于解决带边界流形上的反问题
  • DOI:
    10.1088/1361-6420/ac3994
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Harlim, John;Jiang, Shixiao W;Kim, Hwanwoo;Sanz-Alonso, Daniel
  • 通讯作者:
    Sanz-Alonso, Daniel
Bridging Data Science and Dynamical Systems Theory
连接数据科学和动力系统理论
Linear response based parameter estimation in the presence of model error
  • DOI:
    10.1016/j.jcp.2021.110112
  • 发表时间:
    2021-02-03
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Zhang,He;Harlim,John;Li,Xiantao
  • 通讯作者:
    Li,Xiantao
Kernel-based prediction of non-Markovian time series
非马尔可夫时间序列的基于核的预测
  • DOI:
    10.1016/j.physd.2020.132829
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gilani, Faheem;Giannakis, Dimitrios;Harlim, John
  • 通讯作者:
    Harlim, John
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Harlim其他文献

John Harlim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Harlim', 18)}}的其他基金

Data-driven statistical dynamical modeling: Shortage of training data and high- dimensionality
数据驱动的统计动态建模:训练数据短缺和高维
  • 批准号:
    2207328
  • 财政年份:
    2022
  • 资助金额:
    $ 34.34万
  • 项目类别:
    Standard Grant
Data-driven Modeling of Equilibrium and Non-equilibrium Statistics
均衡和非均衡统计的数据驱动建模
  • 批准号:
    1619661
  • 财政年份:
    2016
  • 资助金额:
    $ 34.34万
  • 项目类别:
    Standard Grant
Practical Filtering Methods with Model Errors
具有模型误差的实用过滤方法
  • 批准号:
    1317919
  • 财政年份:
    2013
  • 资助金额:
    $ 34.34万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 34.34万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 34.34万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 34.34万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 34.34万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 34.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了