Partial Differential Equations, geometric aspects and applications

偏微分方程、几何方面和应用

基本信息

  • 批准号:
    DE230100954
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Early Career Researcher Award
  • 财政年份:
    2023
  • 资助国家:
    澳大利亚
  • 起止时间:
    2023-01-16 至 2026-01-16
  • 项目状态:
    未结题

项目摘要

The study of Partial Differential Equations (PDEs) is a classical and prolific field of research having a fundamental role in the development of mathematical analysis and motivated by important applications in natural and applied sciences. This project aims to obtain substantial progress in the field of PDEs. The area of mathematical research covered is extremely broad, at the confluence of analysis and geometry, and with many applications to other areas of mathematics and natural and applied sciences. The results that will be obtained will produce a significant amount of new knowledge in this extremely difficult, but rapidly growing, field, by exploiting international scientific collaborations and interdisciplinary methods.
偏微分方程(PDE)的研究是一个经典和多产的研究领域,在数学分析的发展中具有基本作用,并由自然和应用科学中的重要应用激励。 该项目旨在在PDE领域取得实质性进展。涵盖的数学研究领域非常广泛,在分析和几何形状的汇合处,并在其他数学以及自然和应用科学领域进行了许多应用。将通过利用国际科学合作和跨学科方法,将在这个极其困难但迅速发展的领域中获得大量新知识的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr Giorgio Poggesi其他文献

Dr Giorgio Poggesi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于边界控制的网络化抛物型偏微分系统一致性研究
  • 批准号:
    62303163
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机偏微分方程耦合系统有限时间的同步能控性
  • 批准号:
    12301577
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分数阶微分引导的深度学习方法研究
  • 批准号:
    62372359
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
流体力学和非线性弹性力学中偏微分方程解的正则性研究
  • 批准号:
    12301141
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
偏微分方程解的水平集的凸性及常秩定理的几何应用
  • 批准号:
    12301237
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了