次调和函数的零点集与奇异集

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    10771102
  • 项目类别:
    面上项目
  • 资助金额:
    27.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0306.混合型、退化型偏微分方程
  • 结题年份:
    2010
  • 批准年份:
    2007
  • 项目状态:
    已结题
  • 起止时间:
    2008-01-01 至2010-12-31

项目摘要

本课题拟深入研究次调和函数的性质,应用调和分析、偏微分方程、几何测度论和几何分析的思想和方法,给出次调和函数的零点集和奇异集的深入刻画,得到次调和函数的零点集和奇异集的Hausdorff测度的较精确的估计,证明次p-Laplace方程弱解的正则性。次调和函数是由次黎曼流形中的水平向量所诱导的次调和方程的解,由于这类方程在几何控制、医学成像、规范场论和非完整力学等领域有重要应用,越来越引起人们的重视。次调和函数的零点集和奇异集是理解次调和函数的极其重要的性质,深入研究次调和函数的零点集和奇异集,可以进一步了解次调和函数的增长、值的分布等,也可以丰富次椭圆方程的理论。

结项摘要

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence for free discontinuity problems in SBD(\Omega)
SBD(\Omega) 中存在自由不连续性问题
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    Nonlinear Analysis: Theory, Methods & Application
  • 影响因子:
    --
  • 作者:
    吕中学;杨孝平
  • 通讯作者:
    杨孝平
连续函数微切集的存在性定理
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    数学物理学报A辑
  • 影响因子:
    --
  • 作者:
    赵培标;杨孝平
  • 通讯作者:
    杨孝平
Some Ambarzumyan-type theorem for Dirac operators
狄拉克算子的一些 Ambarzumyan 型定理
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    Inverse Problems
  • 影响因子:
    2.1
  • 作者:
    杨传富;杨孝平
  • 通讯作者:
    杨孝平
Inverse nodal problems for differential pencils on a star-shaped graph
星形图上微分笔的逆节点问题
  • DOI:
    10.1088/0266-5611/26/8/085008
  • 发表时间:
    2010-08
  • 期刊:
    Inverse Problems
  • 影响因子:
    2.1
  • 作者:
    杨传富;杨孝平
  • 通讯作者:
    杨孝平
An interior inverse problem for the Sturm-Liouville operator with discontinuous conditions
不连续条件下 Sturm-Liouville 算子的内反问题
  • DOI:
    10.1016/j.aml.2008.12.001
  • 发表时间:
    2009-09
  • 期刊:
    Applied Mathematics Letters
  • 影响因子:
    3.7
  • 作者:
    杨传富;杨孝平
  • 通讯作者:
    杨孝平

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

Horizontal connection and hori
水平连接和水平连接
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
  • 影响因子:
    --
  • 作者:
    谭康海;杨孝平
  • 通讯作者:
    杨孝平
Some properties of abnormal extremals on Lie groups
李群上异常极值的一些性质
  • DOI:
    10.1007/s10114-014-1286-9
  • 发表时间:
    2014-11
  • 期刊:
    Acta Mathematica Sinica, English Series
  • 影响因子:
    --
  • 作者:
    黄体仁;杨孝平
  • 通讯作者:
    杨孝平
span style=color:#000000;font-family:;font-size:11pt;font-style:normal;Fast reduction of speckle noise in real ultrasound imagesbr class=Apple-interchange-newline / /span
快速降低真实超声图像中的散斑噪声
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    Signal Processing
  • 影响因子:
    4.4
  • 作者:
    黄杰;杨孝平
  • 通讯作者:
    杨孝平
Ultrasound kindey segmentation with a global prior shape
具有全局先验形状的超声肾脏分割
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    Journal of Visual Communication and Image Representation
  • 影响因子:
    2.6
  • 作者:
    黄杰;杨孝平
  • 通讯作者:
    杨孝平
Existence theorems of micro-ta
微ta的存在定理
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
  • 影响因子:
    --
  • 作者:
    赵培标;杨孝平
  • 通讯作者:
    杨孝平

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

杨孝平的其他基金

高阶非线性偏微分方程图像模型及其基础算法
  • 批准号:
    91330101
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
最优运输中几类非线性偏微分方程和变分问题的研究
  • 批准号:
    11071119
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于数学方法的B超医学图像的斑点噪声处理、自适应精确分割和诊断问题
  • 批准号:
    10926193
  • 批准年份:
    2009
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
Carnot-Caratheodory空间上的变分问题
  • 批准号:
    10471063
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目
有界形变函数、相关的自由不连续总问题及其应用
  • 批准号:
    19771048
  • 批准年份:
    1997
  • 资助金额:
    6.0 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码