Advances in sampling methods with a dependence structure
具有依赖结构的采样方法的进展
基本信息
- 批准号:RGPIN-2020-04019
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To remain competitive in today's world, the Canadian economy rests on advances in science and industry, which increasingly depend on the availability of efficient computational tools. These tools help scientists and analysts evaluate quantities of interest for a system under study. Many of these tools rely on some form of random sampling to approximate quantities for which no explicit formula exists. Random sampling is typically used to "simulate" scenarios of the system. For each scenario, the corresponding value of the quantity of interest is evaluated. By repeating this process several times, a sample of possible values for this quantity is created, which can then be used for inference. This approach is often referred to as the "Monte Carlo method". A drawback of this method is that by nature, random sampling can produce irregularities. Indeed, since scenarios are sampled independently from one another, we may get too many that are similar and/or not enough of a certain type. Quasi-Monte Carlo methods aim at addressing this issue by replacing random sampling by more structured sampling. More precisely, new scenarios are sampled by implicitly taking into account the scenarios sampled so far. This is achieved through the use of low-discrepancy sequences, which are constructions that attempt to place points in a very uniform way in the space over which they are defined. Sophisticated techniques are then used to transform each point into a scenario of the system. These methods have gained considerable attention over the last 20 to 25 years, as they have proven to be useful for solving high-dimensional problems in finance, e.g., involving the simulation of several financial assets over long periods of time. That is, with the same computational effort, they provide estimators with a smaller error than Monte Carlo-based ones. The main goal of this research program is to advance our understanding of quasi-Monte Carlo methods by focusing on the dependence being induced in their underlying sampling schemes. This new approach has the potential to improve the effectiveness of these methods. In addition, we aim to make significant progress in the design and analysis of algorithms that use low-discrepancy sequences to construct approximations adaptively, i.e., learning along the way some of the features of the system to further direct sampling into important regions. Finally, when using low-discrepancy sequences it is more difficult to apply the techniques by which "points" are transformed into "scenarios". This has limited the kinds of models that can be tackled by quasi-Monte Carlo methods. Our research will attempt to address these limitations. This research program will involve at least 10 students from all levels, who will gain valuable expertise on Monte Carlo and quasi-Monte Carlo methods. This research blends theoretical and practical work, so students will be well equipped to transfer the acquired knowledge to either industry or academia.
为了在当今世界保持竞争力,加拿大经济依赖于科学和工业的进步,而科学和工业的进步越来越依赖于高效计算工具的可用性。这些工具帮助科学家和分析师评估所研究系统的兴趣量。其中许多工具依赖某种形式的随机抽样来近似不存在明确公式的数量。随机采样通常用于“模拟”系统的场景。对于每个场景,都会评估感兴趣数量的相应值。通过多次重复此过程,可以创建该数量的可能值样本,然后可以将其用于推理。这种方法通常被称为“蒙特卡罗方法”。 这种方法的缺点是随机抽样本质上会产生不规则性。事实上,由于场景是彼此独立采样的,因此我们可能会得到太多相似的场景和/或某种类型的场景不够多。 准蒙特卡罗方法旨在通过用更结构化的采样代替随机采样来解决这个问题。更准确地说,通过隐式考虑到目前为止采样的场景来对新场景进行采样。这是通过使用低差异序列来实现的,这些序列是试图以非常统一的方式将点放置在定义点的空间中的结构。然后使用复杂的技术将每个点转换为系统的场景。这些方法在过去 20 到 25 年中获得了相当多的关注,因为它们已被证明对于解决金融中的高维问题很有用,例如涉及长时间模拟多种金融资产。也就是说,在相同的计算量下,它们为估计器提供的误差比基于蒙特卡罗的估计器更小。该研究计划的主要目标是通过关注准蒙特卡罗方法在其基础采样方案中引起的依赖性来增进我们对准蒙特卡罗方法的理解。这种新方法有可能提高这些方法的有效性。此外,我们的目标是在使用低差异序列自适应地构造近似值的算法的设计和分析方面取得重大进展,即沿途学习系统的一些特征以进一步直接采样到重要区域。最后,当使用低差异序列时,应用将“点”转换为“场景”的技术变得更加困难。这限制了准蒙特卡罗方法可以处理的模型种类。我们的研究将尝试解决这些限制。 该研究项目将涉及至少 10 名各个级别的学生,他们将获得有关蒙特卡罗和准蒙特卡罗方法的宝贵专业知识。这项研究融合了理论和实践工作,因此学生将有能力将所获得的知识转移到工业界或学术界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lemieux, Christiane其他文献
The Monte Carlo Method
- DOI:
10.1007/978-0-387-78165-5_1 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:0
- 作者:
Lemieux, Christiane - 通讯作者:
Lemieux, Christiane
Quasi-Monte Carlo simulation of the light environment of plants
- DOI:
10.1071/fp08082 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:3
- 作者:
Cieslak, Mikolaj;Lemieux, Christiane;Prusinkiewicz, Przemyslaw - 通讯作者:
Prusinkiewicz, Przemyslaw
Generalized Halton Sequences in 2008: A Comparative Study
- DOI:
10.1145/1596519.1596520 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:0.9
- 作者:
Faure, Henri;Lemieux, Christiane - 通讯作者:
Lemieux, Christiane
Lemieux, Christiane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lemieux, Christiane', 18)}}的其他基金
Advances in sampling methods with a dependence structure
具有依赖结构的采样方法的进展
- 批准号:
RGPIN-2020-04019 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Advances in sampling methods with a dependence structure
具有依赖结构的采样方法的进展
- 批准号:
RGPIN-2020-04019 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Issues in high-dimensional quasi-monte carlo sampling
高维准蒙特卡罗采样中的问题
- 批准号:
238959-2010 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Issues in high-dimensional quasi-monte carlo sampling
高维准蒙特卡罗采样中的问题
- 批准号:
238959-2010 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Issues in high-dimensional quasi-monte carlo sampling
高维准蒙特卡罗采样中的问题
- 批准号:
238959-2010 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
弹性波随机梯度采样多参数全波形反演方法及应用研究
- 批准号:42374136
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于自助重采样的GNSS整周模糊度固定和检验优化方法
- 批准号:42374030
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于退化过程的优化采样和参数估计方法研究
- 批准号:12301317
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空气微生物高效采样与无液式阻抗定量集成的传感检测方法研究
- 批准号:62374021
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于重要失效边界高效采样与精确拟合方法的大型结构抗连续倒塌可靠度设计
- 批准号:52378126
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Age-related differences in neurobiological systems supporting emotion
支持情绪的神经生物系统与年龄相关的差异
- 批准号:
10606216 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Hospice exposure and utilization among older African Americans with ADRD and their decisional support persons
患有 ADRD 的老年非洲裔美国人及其决策支持人员的临终关怀暴露和利用
- 批准号:
10679558 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别: