Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance

优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力

基本信息

  • 批准号:
    RGPIN-2020-05622
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Over the past decades, substantial progress has been made on the development of advanced materials and manufacturing processes to increase load bearing capacity and to facilitate the maintenance of metallic components. Development of high fatigue resistant steels and electron beam welding are examples of technological breakthroughs used in the energy production and automotive industries. While these technologies are promising, their utilization to manufacture and repair fatigue critical components remains limited due to the lack of fundamental knowledge and experimental data that prevent accurate sizing and service life prediction. To unleash the full potential of innovative materials and processes, it is crucial that significant progress be made on the characterization and fundamental understanding of component's fatigue behavior, and the related damage mechanisms. The overarching and long-term goal of the proposed DGP is to develop a fundamental understanding of the transformation induced plasticity (TRIP) under cyclic loading required to the development and manufacture of novel materials with an improved resistance to crack propagation. Outcomes for these new materials are pertinent for the automotive, the aerospace and the energy production sectors. The specific objectives (SO) of the program are SO1) to understand and control the mechanical stability of austenite (TRIP kinetic) and SO2) to understand and characterize the crack growth kinetic in the TRIP-aided microstructures. The uniqueness of the DGP program will translate into major scientific contributions on advanced fatigue testing, on the development of new materials and processes and on the durability of critical component that will be of great interest to the industry. It will support the development and acceptance of innovative materials and processes stemming from Quebec industries (Sodel, Velan, Hydro-Quebec) with a strong emphasis on components durability. It will also contribute to the adoption of technologies that will have a positive impact on energy production, by improving the load bearing capacity of components, and on the environment, by reducing the probability of catastrophic failures. Prof. Brochu's multidisciplinary academic background combined with a 10-year period of industrial practice as a professional engineer have enriched her academic work and contributed to her international recognition as a leader in the field of fatigue of metallic materials. Since 2011, the nominee has contributed to the training of 59 highly qualified persons (HQP)s. Eight HQPs will be trained within the research program of this discovery grant.
在过去的几十年中,在高级材料和制造过程的开发方面取得了重大进展,以提高负载能力并促进金属组件的维护。高疲劳钢和电子束焊接的开发是能源生产和汽车行业中使用的技术突破的例子。尽管这些技术是有希望的,但由于缺乏基本知识和实验数据,它们的生产和修复疲劳关键组件的利用仍然有限,从而阻止了准确的尺寸和使用寿命预测。为了释放创新材料和过程的全部潜力,至关重要的是,对组件疲劳行为的表征和基本理解以及相关的损害机制至关重要。提出的DGP的总体和长期目标是在开发和制造新型材料所需的环状载荷下对转化诱导的可塑性(TRIP)的基本了解,并提高了裂纹繁殖的抵抗力。这些新材料的结果与汽车,航空航天和能源生产部门有关。程序的特定目标(SO)是SO1),以理解和控制奥氏体(TRIP动力学)和SO2的机械稳定性),以理解和表征TripAid的微观结构中的裂纹生长动力学。 DGP计划的独特性将转化为先进的疲劳测试,新材料和过程的开发以及关键组件的耐用性,这将引起该行业的极大兴趣。它将支持由魁北克工业(Sodel,Velan,Hydro-Quebec)产生的创新材料和过程的开发和接受,并强调了组件耐用性。它还将通过减少灾难性故障的可能性来提高组件的负载能力以及对环境的负载能力以及对环境的负载能力,从而有助于采用对能源生产产生积极影响的技术。 Brochu教授的跨学科学术背景与专业工程师的十年工业实践相结合,丰富了她的学术工作,并为她作为金属材料疲劳领域的领导者的国际认可做出了贡献。自2011年以来,提名人已为59名高素质人(HQP)s培训做出了贡献。该发现赠款的研究计划将对八个HQP进行培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brochu, Myriam其他文献

Effect of shot peening on short crack propagation in 300M steel
  • DOI:
    10.1016/j.ijfatigue.2019.105346
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Bag, Amrita;Levesque, Martin;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam
Propagation of short fatigue cracks in permanent and semi-solid mold 357 aluminum alloy
  • DOI:
    10.1016/j.ijfatigue.2011.08.009
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Brochu, Myriam;Verreman, Yves;Bouchard, Dominique
  • 通讯作者:
    Bouchard, Dominique
Effect of different shot peening conditions on the fatigue life of 300 M steel submitted to high stress amplitudes
  • DOI:
    10.1016/j.ijfatigue.2019.105274
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Bag, Amrita;Delbergue, Dorian;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam
A novel approach for quantifying hydrogen embrittlement using side-grooved CT samples
  • DOI:
    10.1016/j.engfracmech.2022.108324
  • 发表时间:
    2022-03-21
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Laliberte-Riverin, Simon;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam
Characterization of bending vibration fatigue of SLM fabricated Ti-6A1-4V
  • DOI:
    10.1016/j.ijfatigue.2017.02.005
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Ellyson, Benjamin;Brochu, Mathieu;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam

Brochu, Myriam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brochu, Myriam', 18)}}的其他基金

Fatigue damage of advanced metallic materials
先进金属材料的疲劳损伤
  • 批准号:
    CRC-2019-00302
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Canada Research Chairs
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
  • 批准号:
    RGPIN-2020-05622
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Fatigue Damage Of Advanced Metallic Materials
先进金属材料的疲劳损伤
  • 批准号:
    CRC-2019-00302
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Canada Research Chairs
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
  • 批准号:
    530064-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
  • 批准号:
    RGPIN-2020-05622
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Fatigue damage of advanced metallic materials
先进金属材料的疲劳损伤
  • 批准号:
    CRC-2019-00302
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Canada Research Chairs
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
  • 批准号:
    530064-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Prévoir le comportement mécanique des matériaux par la caractérisation de la topographie et de la microstructure
初步了解地形和微观结构的材料机械性能
  • 批准号:
    RTI-2020-00626
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Research Tools and Instruments
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
  • 批准号:
    530064-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Optimization of phase transformation for the development of fatigue resistant materials
优化相变以开发抗疲劳材料
  • 批准号:
    RGPIN-2014-05127
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

机械力诱导的IGFBP1表达上调驱动肿瘤转移的功能及调控机制
  • 批准号:
    32300647
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
机械应力触发IL-1R/Piezo1正反馈环路诱导颞下颌关节髁突软骨细胞衰老的机制
  • 批准号:
    82371002
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
软的生物机械力学信号诱导肿瘤细胞逆分化的机制研究
  • 批准号:
    82373098
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
钾离子电池合金型负极尺寸依赖的离子扩散诱导机械退化机制研究
  • 批准号:
    22309161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
千、兆赫兹双频超声诱导声空化-声流促进单晶SiC形性效协同化学机械抛光基础研究
  • 批准号:
    52375470
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
  • 批准号:
    24K15741
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In-situ S/TEM investigation on nature and consequence of mechanically induced martensite in metallic materials
金属材料中机械诱导马氏体的性质和后果的原位 S/TEM 研究
  • 批准号:
    23K13222
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tissue-level Determinants of Mechanically-induced Arrythmias
机械诱发心律失常的组织水平决定因素
  • 批准号:
    495557
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Miscellaneous Programs
CAREER: Manufacturing Soft Functional Composites through Mechanically Induced Assembly of Liquid Microstructures in Elastic Films
职业:通过弹性薄膜中液体微结构的机械诱导组装制造软功能复合材料
  • 批准号:
    2238754
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Identifying the Structural Adaptations that Drive the Mechanically Induced Growth of Skeletal Muscle
确定驱动骨骼肌机械诱导生长的结构适应
  • 批准号:
    10711412
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了