Optimization of phase transformation for the development of fatigue resistant materials

优化相变以开发抗疲劳材料

基本信息

  • 批准号:
    RGPIN-2014-05127
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The development of materials with improved fatigue resistance and their characterization methods is a growing field of research as it allows the optimization of engineering components without compromising safety. One original way to improve the fatigue resistance of metals is to optimize the benefits of phase transformation during the propagation of cracks. The survey of literature reveals that phase transformation can increase fatigue strength by 50% in some specific conditions. The main benefits of phase transformation are to consume mechanical energy and to produce compressive residual stresses closing the crack tip. On the other hand, phase transformation under cyclic loads is complex and its efficiency is influenced by several parameters such as the environment, the microstructure, the loading conditions. A better understanding of 1) the thermodynamic and kinetic of phase transformation at crack tip, and 2) its effect on the crack propagation mechanisms, could lead to the development of advanced materials with improved fatigue resistance. These are the objectives of my discovery grant program.* *At completion of the first five years, the knowledge and experimental results I will have developed will easily be extended to engineering applications such as the optimization of steels for fatigue critical applications (e.g. hydraulic turbine runners and landing gears) and the control of mechanical and environmental conditions to avoid catastrophic failures. This is of significant importance for many local and global industries with whom I am currently collaborating (e.g. Hydro-Quebec, Alstom, Velan and Héroux Devtek). The societal role of my research program is to contribute to the reduction of fuel consumption and green house emissions as the developed materials will be used to design lighter products. **The proposed research program is unique as it seeks a deep understanding and control of phase transformation at crack tip, under cyclic loads in a variety of environments. Very limited work on this topic has been published as such phase transformations are conventionally used to improve the ductility and toughness of materials under monotonic stresses. The specificity of my research programs relies on the interest I have toward the quantification and understanding of fatigue damage mechanisms and their relation to the material microstructure. Such a detail research tackling multidisciplinary challenges, in mechanical and material engineering, has not been performed yet.**My team has the skills and knowledge necessary to perform the proposed work as we have been working on the fatigue behavior of metallic materials since 2006 and on failure analysis since 2001. We have developed a variety of advanced experimental and analytical strategies to measure, observe and understand fatigue failure mechanisms in metals and more specifically in steels and aluminum alloys. In the province of Quebec, I am considered by my peers and by industrial partners one of the most experimented researcher on the topic. **Finally, the research program I propose will contribute to the training of 4 highly qualified engineers and 5 interns that will acquire skills and knowledge in physical metallurgy, failure analysis and fracture mechanic. This type of background is prized in Quebec, especially by the aerospace, transport and energy industries. This type of training has unfortunately been uncovered in Quebec during the last five years especially with the closure, in 2008, of the material science undergraduate program of Ecole Polytechnique de Montreal. The impact of loosing this specialized formation at the undergraduate level is giving a plus value to my contribution to knowledge and to the originality of my training program.
具有改善疲劳性抗性及其表征方法的材料的开发是一个不断增长的研究领域,因为它允许在不损害安全性的情况下优化工程组件。提高金属疲劳性抗性的一种原始方法是优化裂缝传播过程中相变的益处。文献调查表明,在某些特定条件下,相转化可以使疲劳强度提高50%。相变的主要好处是消耗机械能并产生关闭裂纹尖端的复杂残余应力。另一方面,循环载荷下的相变很复杂,其效率受环境,微结构和加载条件等多个参数的影响。更好地了解1)裂纹尖端时相变的热力学和动力学,以及2)其对裂纹传播机制的影响可能导致具有改善疲劳性抗性的高级材料的发展。这些是我发现赠款计划的目标。对于我目前正在与之合作的许多本地和全球行业(例如Hydro-Quebec,Alstom,Velan和HérouxDevtek)至关重要。我的研究计划的社会作用是为减少燃料消耗和温室排放做出贡献,因为开发材料将用于设计较轻的产品。 **拟议的研究计划是独一无二的,因为它在各种环境中的环状负载下寻求对裂纹尖端的相变的深刻理解和控制。该主题的工作非常有限,因为通常使用这种相转换来改善单调应力下材料的延展性和韧性。我的研究计划的特异性取决于我对疲劳损伤机制的量化和理解及其与材料微观结构的关系的兴趣。在机械和材料工程领域,尚未进行此类详细的研究,以应对多学科挑战,尚未进行。合金。在魁北克省,我的同龄人和工业伙伴认为我是该主题最受实验的研究人员之一。 **最后,我提出的研究计划将有助于对4位高素质的工程师和5名实习生进行培训,这些工人将获得物理冶金,失败分析和断裂机械的技能和知识。这种背景在魁北克备受赞誉,尤其是航空航天,运输和能源行业。不幸的是,在过去的五年中,魁北克发现了这种类型的培训,尤其是在2008年关闭蒙特利尔的材料科学本科课程的关闭中。在本科层面上失去这种专业的编队的影响是我对知识和培训计划的独创性的贡献的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brochu, Myriam其他文献

Effect of shot peening on short crack propagation in 300M steel
  • DOI:
    10.1016/j.ijfatigue.2019.105346
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Bag, Amrita;Levesque, Martin;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam
Propagation of short fatigue cracks in permanent and semi-solid mold 357 aluminum alloy
  • DOI:
    10.1016/j.ijfatigue.2011.08.009
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Brochu, Myriam;Verreman, Yves;Bouchard, Dominique
  • 通讯作者:
    Bouchard, Dominique
Effect of different shot peening conditions on the fatigue life of 300 M steel submitted to high stress amplitudes
  • DOI:
    10.1016/j.ijfatigue.2019.105274
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Bag, Amrita;Delbergue, Dorian;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam
A novel approach for quantifying hydrogen embrittlement using side-grooved CT samples
  • DOI:
    10.1016/j.engfracmech.2022.108324
  • 发表时间:
    2022-03-21
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Laliberte-Riverin, Simon;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam
Characterization of bending vibration fatigue of SLM fabricated Ti-6A1-4V
  • DOI:
    10.1016/j.ijfatigue.2017.02.005
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Ellyson, Benjamin;Brochu, Mathieu;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam

Brochu, Myriam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brochu, Myriam', 18)}}的其他基金

Fatigue damage of advanced metallic materials
先进金属材料的疲劳损伤
  • 批准号:
    CRC-2019-00302
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Canada Research Chairs
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
  • 批准号:
    RGPIN-2020-05622
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
  • 批准号:
    RGPIN-2020-05622
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Fatigue Damage Of Advanced Metallic Materials
先进金属材料的疲劳损伤
  • 批准号:
    CRC-2019-00302
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Canada Research Chairs
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
  • 批准号:
    530064-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
  • 批准号:
    RGPIN-2020-05622
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Fatigue damage of advanced metallic materials
先进金属材料的疲劳损伤
  • 批准号:
    CRC-2019-00302
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Canada Research Chairs
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
  • 批准号:
    530064-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Prévoir le comportement mécanique des matériaux par la caractérisation de la topographie et de la microstructure
初步了解地形和微观结构的材料机械性能
  • 批准号:
    RTI-2020-00626
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Tools and Instruments
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
  • 批准号:
    530064-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

高层钢结构建模-优化-深化的跨阶段智能设计方法
  • 批准号:
    52308142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
  • 批准号:
    72374095
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
  • 批准号:
    32303043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
  • 批准号:
    32371612
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
  • 批准号:
    52307091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
  • 批准号:
    10813323
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Utilization of Immuno-PET to detect response and guide novel oHSV-based therapy for glioma
利用免疫 PET 检测反应并指导基于 oHSV 的新型神经胶质瘤治疗
  • 批准号:
    10635507
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Development of novel, targeted small molecule inhibitors of DNA repair in high unmet need tumors-TNBC
开发新型靶向小分子 DNA 修复抑制剂,用于高度未满足需求的肿瘤 - TNBC
  • 批准号:
    10480460
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
  • 批准号:
    RGPIN-2020-05622
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
  • 批准号:
    10377785
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了