Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance

优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力

基本信息

  • 批准号:
    RGPIN-2020-05622
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Over the past decades, substantial progress has been made on the development of advanced materials and manufacturing processes to increase load bearing capacity and to facilitate the maintenance of metallic components. Development of high fatigue resistant steels and electron beam welding are examples of technological breakthroughs used in the energy production and automotive industries. While these technologies are promising, their utilization to manufacture and repair fatigue critical components remains limited due to the lack of fundamental knowledge and experimental data that prevent accurate sizing and service life prediction. To unleash the full potential of innovative materials and processes, it is crucial that significant progress be made on the characterization and fundamental understanding of component's fatigue behavior, and the related damage mechanisms. The overarching and long-term goal of the proposed DGP is to develop a fundamental understanding of the transformation induced plasticity (TRIP) under cyclic loading required to the development and manufacture of novel materials with an improved resistance to crack propagation. Outcomes for these new materials are pertinent for the automotive, the aerospace and the energy production sectors. The specific objectives (SO) of the program are SO1) to understand and control the mechanical stability of austenite (TRIP kinetic) and SO2) to understand and characterize the crack growth kinetic in the TRIP-aided microstructures. The uniqueness of the DGP program will translate into major scientific contributions on advanced fatigue testing, on the development of new materials and processes and on the durability of critical component that will be of great interest to the industry. It will support the development and acceptance of innovative materials and processes stemming from Quebec industries (Sodel, Velan, Hydro-Quebec) with a strong emphasis on components durability. It will also contribute to the adoption of technologies that will have a positive impact on energy production, by improving the load bearing capacity of components, and on the environment, by reducing the probability of catastrophic failures. Prof. Brochu's multidisciplinary academic background combined with a 10-year period of industrial practice as a professional engineer have enriched her academic work and contributed to her international recognition as a leader in the field of fatigue of metallic materials. Since 2011, the nominee has contributed to the training of 59 highly qualified persons (HQP)s. Eight HQPs will be trained within the research program of this discovery grant.
在过去的几十年里,先进材料和制造工艺的开发取得了实质性进展,以提高承载能力并促进金属部件的维护。高疲劳钢和电子束焊接的开发是能源生产和汽车行业技术突破的例子。尽管这些技术前景广阔,但由于缺乏基础知识和实验数据,无法准确确定尺寸和使用寿命,因此它们在制造和修复疲劳关键部件方面的应用仍然有限。为了充分发挥创新材料和工艺的潜力,在部件疲劳行为以及相关损伤机制的表征和基本理解方面取得重大进展至关重要。拟议的 DGP 的总体和长期目标是对循环载荷下的相变诱导塑性 (TRIP) 有一个基本的了解,这是开发和制造具有改进的抗裂纹扩展能力的新型材料所必需的。这些新材料的成果与汽车、航空航天和能源生产领域相关。该计划的具体目标 (SO) 是 SO1) 了解和控制奥氏体的机械稳定性(TRIP 动力学)和 SO2) 了解和表征 TRIP 辅助微观结构中的裂纹扩展动力学。 DGP 项目的独特性将转化为在高级疲劳测试、新材料和新工艺的开发以及关键部件的耐用性方面的重大科学贡献,这将引起业界的极大兴趣。它将支持来自魁北克工业(Sodel、Velan、Hydro-Quebec)的创新材料和工艺的开发和接受,重点关注部件的耐用性。它还将有助于采用对能源生产产生积极影响的技术,通过提高部件的承载能力,并通过降低灾难性故障的可能性对环境产生积极影响。 Brochu教授的多学科学术背景与10年专业工程师的工业实践相结合,丰富了她的学术工作,并为她作为金属材料疲劳领域领导者的国际认可做出了贡献。自 2011 年以来,提名人已为 59 名高素质人才 (HQP) 的培训做出了贡献。八名总部人员将在该发现资助的研究计划内接受培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brochu, Myriam其他文献

Effect of shot peening on short crack propagation in 300M steel
  • DOI:
    10.1016/j.ijfatigue.2019.105346
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Bag, Amrita;Levesque, Martin;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam
Propagation of short fatigue cracks in permanent and semi-solid mold 357 aluminum alloy
  • DOI:
    10.1016/j.ijfatigue.2011.08.009
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Brochu, Myriam;Verreman, Yves;Bouchard, Dominique
  • 通讯作者:
    Bouchard, Dominique
Effect of different shot peening conditions on the fatigue life of 300 M steel submitted to high stress amplitudes
  • DOI:
    10.1016/j.ijfatigue.2019.105274
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Bag, Amrita;Delbergue, Dorian;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam
A novel approach for quantifying hydrogen embrittlement using side-grooved CT samples
  • DOI:
    10.1016/j.engfracmech.2022.108324
  • 发表时间:
    2022-03-21
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Laliberte-Riverin, Simon;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam
Characterization of bending vibration fatigue of SLM fabricated Ti-6A1-4V
  • DOI:
    10.1016/j.ijfatigue.2017.02.005
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Ellyson, Benjamin;Brochu, Mathieu;Brochu, Myriam
  • 通讯作者:
    Brochu, Myriam

Brochu, Myriam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brochu, Myriam', 18)}}的其他基金

Fatigue damage of advanced metallic materials
先进金属材料的疲劳损伤
  • 批准号:
    CRC-2019-00302
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Canada Research Chairs
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
  • 批准号:
    RGPIN-2020-05622
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Fatigue Damage Of Advanced Metallic Materials
先进金属材料的疲劳损伤
  • 批准号:
    CRC-2019-00302
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Canada Research Chairs
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
  • 批准号:
    530064-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
  • 批准号:
    RGPIN-2020-05622
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Fatigue damage of advanced metallic materials
先进金属材料的疲劳损伤
  • 批准号:
    CRC-2019-00302
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Canada Research Chairs
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
  • 批准号:
    530064-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Prévoir le comportement mécanique des matériaux par la caractérisation de la topographie et de la microstructure
初步了解地形和微观结构的材料机械性能
  • 批准号:
    RTI-2020-00626
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Research Tools and Instruments
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
  • 批准号:
    530064-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Optimization of phase transformation for the development of fatigue resistant materials
优化相变以开发抗疲劳材料
  • 批准号:
    RGPIN-2014-05127
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
  • 批准号:
    24K15741
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In-situ S/TEM investigation on nature and consequence of mechanically induced martensite in metallic materials
金属材料中机械诱导马氏体的性质和后果的原位 S/TEM 研究
  • 批准号:
    23K13222
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tissue-level Determinants of Mechanically-induced Arrythmias
机械诱发心律失常的组织水平决定因素
  • 批准号:
    495557
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Miscellaneous Programs
CAREER: Manufacturing Soft Functional Composites through Mechanically Induced Assembly of Liquid Microstructures in Elastic Films
职业:通过弹性薄膜中液体微结构的机械诱导组装制造软功能复合材料
  • 批准号:
    2238754
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Identifying the Structural Adaptations that Drive the Mechanically Induced Growth of Skeletal Muscle
确定驱动骨骼肌机械诱导生长的结构适应
  • 批准号:
    10711412
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了