Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
基本信息
- 批准号:RGPIN-2019-05450
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Physics understands matter through its atomic or molecular structure. This description has been overwhelmingly successful to predict physical properties and discover new materials. It is particularly well-suited to systems with a finite, though not too large, number of atoms and molecules. Phenomena occurring only when a large number of atoms or molecules interact call for other techniques. Phase transition is one such phenomenon: it is known that no phase transitions may occur unless the number of interacting objects tends to infinity. The proposed project aims at understanding the passage from finite systems (say, those with a finite number of atoms) to their continuum limit (the theories that assume from the start an infinite number of interacting objects). In particular it wants to identify the properties of finite systems that reveal those of the infinite ones obtained by increasing the number of objects.
The main mathematical tool of the project will be algebra. Several chapters of mathematics have played a role in the description of phase transitions. Analysis and algebra are probably the central ones. Algebra provides the tools to identify the symmetries of physical systems. Symmetries are operations that transforms a system into another one without changing its overall physical properties. These symmetries offer fundamental ways to approach physical systems and define them mathematically. The proposed project puts an emphasis on studying the algebraic structures arising in both the finite lattice models and their infinite continuum limits.
The research will focus on two-dimensional lattice models of microscopic interactions. These models are known as percolation, the Ising model, the XXZ spin chain, dense and dilute loop models, etc. They offer a natural laboratory to probe physical properties and prove them rigorously. They have a finite number of “particles”, they can be probed on the computer and they are believed to go to (logarithmic) conformal field theories (a distinguished set of well-studied continuum models). Most importantly they rest upon an algebraic description that lends itself naturally to the study of the limit to large number of particles.
Previous works in these directions, others' and mine, have contributed to both physics and mathematics. For example it is useful in physics to recognize emerging properties of a finite system, even though there are only partially realized. In mathematics, the study of algebraic structures of physical systems has suggested many new avenues of development or new ways of looking at existing results.
物理学通过ITOMIC或分子结构来了解新的材料。 (假设那些具有有限数量的原子的人)尤其是从ofb ofb jects开始的理论)。
YSI和代数的数学工具可能是识别物理系统的对称性的工具。在DELS及其无限连续体限制中产生的代数结构。
该研究将重点放在微观相互作用的TW-Dimensice模型上。它们被认为是Ories(一组杰出的连续模型)。
以前的作品在物理和数学上既有贡献,例如,它在有限的系统的新兴属性中使用了。或查看现有结果的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SaintAubin, Yvan其他文献
SaintAubin, Yvan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SaintAubin, Yvan', 18)}}的其他基金
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
- 批准号:
RGPIN-2019-05450 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
- 批准号:
RGPIN-2019-05450 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
- 批准号:
RGPIN-2019-05450 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
- 批准号:
RGPIN-2014-05102 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
- 批准号:
RGPIN-2014-05102 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
- 批准号:
RGPIN-2014-05102 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
- 批准号:
RGPIN-2014-05102 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
- 批准号:
RGPIN-2014-05102 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Exploring critical phenomena with tools from lattice models, CFT and SLE
使用晶格模型、CFT 和 SLE 工具探索关键现象
- 批准号:
44323-2009 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Exploring critical phenomena with tools from lattice models, CFT and SLE
使用晶格模型、CFT 和 SLE 工具探索关键现象
- 批准号:
44323-2009 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于自适应笛卡尔网格-格子波尔兹曼方法和自动微分方法的高效非定常流动导数计算方法研究
- 批准号:12302379
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
熵格子玻尔兹曼方法的边界处理及收敛性分析研究
- 批准号:12301520
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于格子Boltzmann方法和深度学习的多相渗流多尺度模型和机理研究
- 批准号:52376068
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于格子Boltzmann方法的粉末床熔融过程介观建模与仿真
- 批准号:12302373
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于数据同化的湍流亚格子模型改进方法
- 批准号:12302283
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Overdamped Langevin方程式向けの時間積分並列化手法
过阻尼朗之万方程的时间积分并行化方法
- 批准号:
22K12063 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
- 批准号:
RGPIN-2019-05450 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Challenge towards the open problems in the theory of lattice polytopes by algebraic and combinatorial methods
用代数和组合方法挑战晶格多胞体理论中的开放问题
- 批准号:
21KK0043 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
- 批准号:
RGPIN-2019-05450 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
双直交多項式解をもつ離散可積分系系列の研究
双正交多项式解的离散可积系统序列研究
- 批准号:
21K13837 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists