From finite lattice models to continuum field theories

从有限晶格模型到连续介质场论

基本信息

  • 批准号:
    RGPIN-2014-05102
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Phase transitions are part of everyday experience: liquid water turning into ice upon freezing or into gas upon boiling, sparkling water or champagne releasing gas when the bottle is open, etc. Their study has been part of physics and mathematics since about a century. A complete theory should explain how microscopic interactions, known from classical or quantum physics, give rise to macroscopic phenomena when the number of particles involved is large. The difficulty of the field lies in this passage from the description of a few interacting particles to that of an infinite number of them. In physics many-body problems are tackled within statistical physics where one accepts to discard details of each particle involved and concentrates instead on global properties of the system. For example one might ask whether or not a piece of iron behaves as a magnet instead of trying to describe how the spins of iron atoms are aligned, even though it is this alignment that causes magnetisation. In mathematics these problems fall in probability theory: each state of the system, e.g. a particular alignment of spins, is given a probability and macroscopic behavior is described from the set of all these probabilities. Phase transitions are therefore part of statistical physics and probability theory. Properties of phase transitions depend on several external parameters. The behavior of water depends on temperature, obviously, but also on pressure. Water boils at a lower temperature at high altitude. Many scientists have concentrated their efforts to critical values of these parameters. (Water has a single critical point among all the pairs (temperature, pressure).) The reason for this is that it is believed (and has been proved in a few cases) that physical behavior at these critical points displays a large family of symmetries, that is, some deformations, known as conformal transformations, leave the physics unchanged. These symmetries help in the description of phase transitions. The research supported by this grant will focus on two-dimensional lattice models of microscopic interactions. In the community these models are known as percolation, the Ising model, the XXZ spin chain, dense and dilute loop models, etc. They offer a natural laboratory to probe physical properties and prove them rigorously. They have a finite number of “particles”, they can be probed on the computer, they are believed to go to (logarithmic) conformal field theories (a distinguished set of continuum models) and rest upon an algebraic description that lends itself naturally to the study of the limit to large number of particles. Because of the latter property, these models can be studied using algebra and representation theory. In two physical dimensions these properties are remarkably powerful and the research will concentrate on two-dimensional models. The goal of this research is to describe how the conformal field theories can be understood from finite lattice models and how the large family of symmetries at critical points arises through a mathematically sound limit from finite to infinite number of particles.
相过渡是当天的一部分:液体水在开放瓶时散发冰的冰或气体时,他们的研究一直是物理和数学的一部分,自一个世纪以来。从涉及的经典物理数量或量子物理数量很大。相反,集中在系统的全球性能上,例如,一块铁作为磁铁而不是试图对铁的旋转进行表现。系统的旋转状态是一种概率,并从所有人的概率中描述了宏观。批判性的努力(水在所有对中都有一个临界点(温度,压力)。显示一个较大的对称性,某些电子形式(称为保形转换)使这些对称性不变作为渗透,ISING模型,XXZ自旋链,致密和稀释的环模等。自然实验室以探测物理特性,并且它们具有有限的数量,它们可以据信,它们被认为是(对数)完美的现场理论(一组连续模型)和静止的代数描述至限制大量粒子。集中于二维模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SaintAubin, Yvan其他文献

SaintAubin, Yvan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SaintAubin, Yvan', 18)}}的其他基金

Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring critical phenomena with tools from lattice models, CFT and SLE
使用晶格模型、CFT 和 SLE 工具探索关键现象
  • 批准号:
    44323-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring critical phenomena with tools from lattice models, CFT and SLE
使用晶格模型、CFT 和 SLE 工具探索关键现象
  • 批准号:
    44323-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于自适应笛卡尔网格-格子波尔兹曼方法和自动微分方法的高效非定常流动导数计算方法研究
  • 批准号:
    12302379
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
熵格子玻尔兹曼方法的边界处理及收敛性分析研究
  • 批准号:
    12301520
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玻色-费米混合超流中的涡旋和涡旋格子态研究
  • 批准号:
    12375017
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于格子Boltzmann方法和深度学习的多相渗流多尺度模型和机理研究
  • 批准号:
    52376068
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于格子Boltzmann方法的粉末床熔融过程介观建模与仿真
  • 批准号:
    12302373
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

無限アソシエーションスキームにおけるDelsarte理論の研究
无限关联方案中Delsarte理论的研究
  • 批准号:
    19K03445
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Tensor network approach to elementary particle physics
基本粒子物理的张量网络方法
  • 批准号:
    17K05411
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了