From finite lattice models to continuum field theories

从有限晶格模型到连续介质场论

基本信息

  • 批准号:
    RGPIN-2014-05102
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Phase transitions are part of everyday experience: liquid water turning into ice upon freezing or into gas upon boiling, sparkling water or champagne releasing gas when the bottle is open, etc. Their study has been part of physics and mathematics since about a century. A complete theory should explain how microscopic interactions, known from classical or quantum physics, give rise to macroscopic phenomena when the number of particles involved is large. The difficulty of the field lies in this passage from the description of a few interacting particles to that of an infinite number of them. In physics many-body problems are tackled within statistical physics where one accepts to discard details of each particle involved and concentrates instead on global properties of the system. For example one might ask whether or not a piece of iron behaves as a magnet instead of trying to describe how the spins of iron atoms are aligned, even though it is this alignment that causes magnetisation. In mathematics these problems fall in probability theory: each state of the system, e.g. a particular alignment of spins, is given a probability and macroscopic behavior is described from the set of all these probabilities. Phase transitions are therefore part of statistical physics and probability theory. Properties of phase transitions depend on several external parameters. The behavior of water depends on temperature, obviously, but also on pressure. Water boils at a lower temperature at high altitude. Many scientists have concentrated their efforts to critical values of these parameters. (Water has a single critical point among all the pairs (temperature, pressure).) The reason for this is that it is believed (and has been proved in a few cases) that physical behavior at these critical points displays a large family of symmetries, that is, some deformations, known as conformal transformations, leave the physics unchanged. These symmetries help in the description of phase transitions. The research supported by this grant will focus on two-dimensional lattice models of microscopic interactions. In the community these models are known as percolation, the Ising model, the XXZ spin chain, dense and dilute loop models, etc. They offer a natural laboratory to probe physical properties and prove them rigorously. They have a finite number of “particles”, they can be probed on the computer, they are believed to go to (logarithmic) conformal field theories (a distinguished set of continuum models) and rest upon an algebraic description that lends itself naturally to the study of the limit to large number of particles. Because of the latter property, these models can be studied using algebra and representation theory. In two physical dimensions these properties are remarkably powerful and the research will concentrate on two-dimensional models. The goal of this research is to describe how the conformal field theories can be understood from finite lattice models and how the large family of symmetries at critical points arises through a mathematically sound limit from finite to infinite number of particles.
相变是日常经验的一部分:液态水在冻结时变成冰,在沸腾时变成气体,苏打水或香槟在打开瓶子时释放气体等。大约一个世纪以来,他们的研究一直是物理学和数学的一部分。完整的理论应该解释当涉及的粒子数量很大时,经典或量子物理学中已知的微观相互作用如何产生宏观现象。该领域的困难在于从描述几个相互作用的粒子到描述一个相互作用的粒子。他们的数量无限。 在物理学中,多体问题是在统计物理学中解决的,人们接受放弃所涉及的每个粒子的细节,而专注于系统的全局特性,例如,人们可能会问一块铁是否具有磁铁的作用,而不是尝试。描述铁原子的自旋如何排列,尽管正是这种排列导致了磁化,但在数学中,这些问题属于概率论:系统的每个状态,例如特定的自旋排列,都被赋予了概率和宏观行为。由集合描述因此,相变是统计物理学和概率论的一部分。 相变的特性取决于几个外部参数。显然,水的行为取决于温度,但也取决于压力。许多科学家将精力集中在这些参数的临界值上。在所有对(温度、压力)中都有一个临界点。)其原因是人们相信(并且在一些情况下已经证明)这些临界点的物理行为表现出一大群对称性,即是一些变形,称为共形变换,保持物理不变。这些对称性有助于描述相变。 这项资助支持的研究将集中在微观相互作用的二维晶格模型上,这些模型在社区中被称为渗透、伊辛模型、XXZ 自旋链、稠密和稀环模型等。它们提供了一个天然的实验室。探索物理性质并严格证明它们具有有限数量的“粒子”,可以在计算机上探测它们,它们被认为适用于(对数)共形场论(一组杰出的)。连续介质模型)并依赖于代数描述,该描述自然适合研究大量粒子的极限。由于后一个特性,这些模型可以使用代数和表示论来研究,在两个物理维度中,这些特性是稀疏的。功能强大,研究将集中在二维模型上。 这项研究的目的是描述如何从有限晶格模型中理解共形场论,以及如何通过从有限到无限数量的粒子的数学合理极限来产生临界点的大对称族。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SaintAubin, Yvan其他文献

SaintAubin, Yvan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SaintAubin, Yvan', 18)}}的其他基金

Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring critical phenomena with tools from lattice models, CFT and SLE
使用晶格模型、CFT 和 SLE 工具探索关键现象
  • 批准号:
    44323-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring critical phenomena with tools from lattice models, CFT and SLE
使用晶格模型、CFT 和 SLE 工具探索关键现象
  • 批准号:
    44323-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于自适应笛卡尔网格-格子波尔兹曼方法和自动微分方法的高效非定常流动导数计算方法研究
  • 批准号:
    12302379
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
熵格子玻尔兹曼方法的边界处理及收敛性分析研究
  • 批准号:
    12301520
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玻色-费米混合超流中的涡旋和涡旋格子态研究
  • 批准号:
    12375017
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于格子Boltzmann方法和深度学习的多相渗流多尺度模型和机理研究
  • 批准号:
    52376068
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于格子Boltzmann方法的粉末床熔融过程介观建模与仿真
  • 批准号:
    12302373
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

無限アソシエーションスキームにおけるDelsarte理論の研究
无限关联方案中Delsarte理论的研究
  • 批准号:
    19K03445
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Tensor network approach to elementary particle physics
基本粒子物理的张量网络方法
  • 批准号:
    17K05411
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了