AIARA: Artificial Intelligence Enabled Highly Adaptive Robots for Aerospace Industry
AIARA:人工智能为航空航天工业提供高度自适应机器人
基本信息
- 批准号:543881-2019
- 负责人:
- 金额:$ 9.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Agile manufacturing by the use of adaptive robots is the provision of advanced manufacturing, Industry 4.0, to enable more efficient, lean and cost-effective production of customized, large-scale but small batch size products. It is considered to be the ultimate solution for manufacturing industries hindered by their heavy reliance on manual labor. Aerospace industry is one of those industries that suffers greatly from lack of automation causing a backlog of new aircraft orders and prevents it from moving fast enough to adopt more efficient aircraft designs and advanced materials. An increased level of automation via the use of robots in manufacturing new aircrafts is pressing for not only cost reduction but also improved quality and safety in the aerospace industry. However, traditional industrial robots used in assembly lines of automotive industry and electronic devices is inadequate for the aerospace industry, because of small batch sizes, large components, diversity of products and a high level of complexity and variation in operations. Thus, the current practice of programming or teaching a robot for every specific task is limited, if not futile, in the aerospace industry. In advanced manufacturing and Industry 4.0, robots are intelligent, highly adaptive and can be trained to handle different equipment, tools, products and materials without a need for explicit programming. However, artificial intelligence-based learning methods require a large volume of data for capturing all possible physical experiences to train the robot, which can be too expensive or unavailable. Recent advances in robotics demonstrate the feasibility of learning from synthetic robot experiences and simulations. In the proposed project, we aim to develop a methodology to use learning results from simulation and virtual environments to robustly train a multi-arm adaptive robot for a wide range of aerospace manufacturing processes. This research partnership brings together the UBC, Kinova Inc., and Element AI, both prominent Canadian companies in the hi-tech sector, and in collaboration with the German Aerospace Centre DLR to build solutions for more effective manufacturing in aerospace industry.
使用自适应机器人的敏捷制造是先进制造、工业4.0的提供,能够更高效、精益和更具成本效益地生产定制化、大规模但小批量的产品。它被认为是严重依赖体力劳动的制造业的最终解决方案。航空航天工业是因缺乏自动化而遭受严重影响的行业之一,导致新飞机订单积压,并阻碍其快速采取更高效的飞机设计和先进材料。通过在制造新飞机时使用机器人来提高自动化水平,不仅迫切需要降低成本,而且还需要提高航空航天业的质量和安全性。然而,由于批量小、部件大、产品多样性以及操作的复杂性和变化性高,用于汽车工业和电子设备装配线的传统工业机器人不适用于航空航天工业。因此,目前在航空航天工业中针对每项特定任务对机器人进行编程或教学的做法即使不是徒劳,也是有限的。在先进制造和工业 4.0 中,机器人具有智能性、适应性强,可以经过训练来处理不同的设备、工具、产品和材料,而无需显式编程。然而,基于人工智能的学习方法需要大量数据来捕获所有可能的物理经验来训练机器人,这可能过于昂贵或不可用。机器人技术的最新进展证明了从合成机器人经验和模拟中学习的可行性。在拟议的项目中,我们的目标是开发一种方法,利用模拟和虚拟环境的学习结果,为广泛的航空航天制造工艺稳健地训练多臂自适应机器人。这一研究合作伙伴关系汇集了 UBC、Kinova Inc. 和 Element AI 这两家加拿大高科技领域的知名公司,并与德国航空航天中心 DLR 合作,为航空航天业更有效的制造构建解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Najjaran, Homayoun其他文献
SliceNet: A proficient model for real-time 3D shape-based recognition
- DOI:
10.1016/j.neucom.2018.07.061 - 发表时间:
2018-11-17 - 期刊:
- 影响因子:6
- 作者:
Chen, Xuzhan;Chen, Youping;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
A Critical Analysis of Industrial Human-Robot Communication and Its Quest for Naturalness Through the Lens of Complexity Theory.
- DOI:
10.3389/frobt.2022.870477 - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Mukherjee, Debasmita;Gupta, Kashish;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
A review of recent trend in motion planning of industrial robots
- DOI:
10.1007/s41315-023-00274-2 - 发表时间:
2023-02-22 - 期刊:
- 影响因子:1.7
- 作者:
Tamizi, Mehran Ghafarian;Yaghoubi, Marjan;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
Droplet sensing by measuring the capacitance between coplanar electrodes in a digital microfluidic system
- DOI:
10.1039/c2lc40647k - 发表时间:
2012-01-01 - 期刊:
- 影响因子:6.1
- 作者:
Bhattacharjee, Biddut;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
A Survey of Robot Learning Strategies for Human-Robot Collaboration in Industrial Settings
- DOI:
10.1016/j.rcim.2021.102231 - 发表时间:
2021-07-31 - 期刊:
- 影响因子:10.4
- 作者:
Mukherjee, Debasmita;Gupta, Kashish;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
Najjaran, Homayoun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Najjaran, Homayoun', 18)}}的其他基金
Extended reality (XR) work-cell for safe human-centered robotics research
用于安全以人为本的机器人研究的扩展现实 (XR) 工作单元
- 批准号:
RTI-2023-00418 - 财政年份:2022
- 资助金额:
$ 9.62万 - 项目类别:
Research Tools and Instruments
AIARA: Artificial Intelligence Enabled Highly Adaptive Robots for Aerospace Industry
AIARA:人工智能为航空航天工业提供高度自适应机器人
- 批准号:
543881-2019 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Collaborative Research and Development Grants
Detection system for screening of Household Hazardous Waste (HHW) in recycling facilities
用于筛选回收设施中的家庭危险废物 (HHW) 的检测系统
- 批准号:
570376-2021 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Alliance Grants
Safe and Robust Autonomous Vehicle Technology
安全稳健的自动驾驶汽车技术
- 批准号:
RGPIN-2017-06767 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Discovery Grants Program - Individual
Responsive and Robust Object Detection for Industrial Point Cloud Applications
适用于工业点云应用的响应灵敏、鲁棒的物体检测
- 批准号:
567583-2021 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Alliance Grants
Integration of AI into Manufacturing Execution System (IMES)
将人工智能集成到制造执行系统 (IMES)
- 批准号:
555220-2020 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Alliance Grants
AIARA: Artificial Intelligence Enabled Highly Adaptive Robots for Aerospace Industry
AIARA:人工智能为航空航天工业提供高度自适应机器人
- 批准号:
543881-2019 - 财政年份:2020
- 资助金额:
$ 9.62万 - 项目类别:
Collaborative Research and Development Grants
Safe and Robust Autonomous Vehicle Technology
安全稳健的自动驾驶汽车技术
- 批准号:
RGPIN-2017-06767 - 财政年份:2020
- 资助金额:
$ 9.62万 - 项目类别:
Discovery Grants Program - Individual
Integration of AI into Manufacturing Execution System (IMES)
将人工智能集成到制造执行系统 (IMES)
- 批准号:
555220-2020 - 财政年份:2020
- 资助金额:
$ 9.62万 - 项目类别:
Alliance Grants
Detection and classification of plant pots in real time using artificial intelligence methods for mobile manipulators used in nursery farms and greenhouses
利用人工智能方法对苗圃和温室中使用的移动机械手进行花盆实时检测和分类
- 批准号:
538450-2019 - 财政年份:2019
- 资助金额:
$ 9.62万 - 项目类别:
Engage Grants Program
相似国自然基金
人造血干细胞的发育异质性解析及体外再生策略
- 批准号:82330006
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
可级联催化和运动变形的人造细胞构建及其在硼中子俘获治疗肿瘤中的研究
- 批准号:82373206
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人造空间物体对天文观测图像的污染与防治
- 批准号:12303104
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于阻燃三维集流体/人造保护层的热稳定钠(钾)金属负极设计构筑及其调控枝晶生长动力学研究
- 批准号:52302085
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于CaO-TiO2-ZrO2-Nd2O3(CeO2)体系的新型人造岩石基材及其稳定性研究
- 批准号:52361002
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Standard Grant