Safe and Robust Autonomous Vehicle Technology
安全稳健的自动驾驶汽车技术
基本信息
- 批准号:RGPIN-2017-06767
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The outcome of research in the global robotics and mechatronics community over the past two decades has revolutionized both the aerospace and automotive industries by providing the technologies used in unmanned aerial vehicles (UAVs) and self-driving cars. A number of automotive and aerospace manufacturers, as well as high-tech companies, have made substantial investments in their research and development programs to introduce the first flawless and fully autonomous vehicle technology and to gain a greater share of the market. However, the fate of these investments is linked to acceptance and adoption of autonomous technology by regulators and the public . The proposed research program focuses on improving the robustness of autonomous vehicle technology for safer and more reliable UAVs and self-driving cars. This goal will be achieved by investigating every component of the autonomous navigation process with specific emphasis on the following three aspects.
First, innovative machine learning methods based on convolutional neural network deep learning will be developed and used to enable more efficient object detection in unknown and complex environments. In this way, a direct perception approach for robust autonomous navigation of UAVs and AVs is introduced.
Second, approximate reasoning methods for intelligent high-level decision making will be developed to provide a systematic way of responding to vague states and contradictory evidence in unforeseen driving or flight scenarios. A versatile inference engine will be developed by incorporating network-based machine learning, fuzzy logic and evidential reasoning methods.
Third, a stable hybrid control system will be developed that can provide fast deceleration and swerving of AVs, and high-pitch maneuvers. Using this hybrid control scheme, a proof-of-concept active fault tolerant control (AFTC) system will be developed for a quadrotor UAV.
The contributions of the proposed research will be creating the potential for: i) a prototype autonomous car that is safe to operate on public roads, and ii) a commercial-grade UAV safe to fly beyond line of sight. The proposed research will contribute to the concurrent global research aiming to resolve the dilemma of AV technology by introducing innovative human-like approximate reasoning paradigms that accounts for moral, social and legal standards. In conclusion, independent, factual and transparent research originating from academia will influence the public acceptance and adoption of AV technology.
过去二十年来,全球机器人和机电一体化领域的研究成果通过提供无人机 (UAV) 和自动驾驶汽车中使用的技术,彻底改变了航空航天和汽车行业。许多汽车和航空航天制造商以及高科技公司在研发项目上进行了大量投资,以推出第一个完美的全自动汽车技术,并获得更大的市场份额。然而,这些投资的命运与监管机构和公众对自主技术的接受和采用息息相关。拟议的研究计划侧重于提高自动驾驶汽车技术的稳健性,以实现更安全、更可靠的无人机和自动驾驶汽车。这一目标将通过研究自主导航过程的每个组成部分来实现,特别强调以下三个方面。
首先,将开发并使用基于卷积神经网络深度学习的创新机器学习方法,以在未知和复杂的环境中实现更有效的目标检测。通过这种方式,引入了一种用于无人机和自动驾驶汽车鲁棒自主导航的直接感知方法。
其次,将开发用于智能高层决策的近似推理方法,以提供一种系统的方法来响应不可预见的驾驶或飞行场景中的模糊状态和矛盾证据。将通过结合基于网络的机器学习、模糊逻辑和证据推理方法来开发多功能推理引擎。
第三,将开发稳定的混合控制系统,该系统可以提供自动驾驶汽车的快速减速和转向以及高俯仰机动。使用这种混合控制方案,将为四旋翼无人机开发概念验证主动容错控制(AFTC)系统。
拟议研究的贡献将创造以下潜力:i)可在公共道路上安全运行的原型自动驾驶汽车,以及 ii)可安全飞出视距的商业级无人机。拟议的研究将为同时进行的全球研究做出贡献,该研究旨在通过引入考虑道德、社会和法律标准的创新类人近似推理范式来解决自动驾驶技术的困境。总之,来自学术界的独立、事实和透明的研究将影响公众对自动驾驶技术的接受和采用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Najjaran, Homayoun其他文献
SliceNet: A proficient model for real-time 3D shape-based recognition
- DOI:
10.1016/j.neucom.2018.07.061 - 发表时间:
2018-11-17 - 期刊:
- 影响因子:6
- 作者:
Chen, Xuzhan;Chen, Youping;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
A Critical Analysis of Industrial Human-Robot Communication and Its Quest for Naturalness Through the Lens of Complexity Theory.
- DOI:
10.3389/frobt.2022.870477 - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Mukherjee, Debasmita;Gupta, Kashish;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
A review of recent trend in motion planning of industrial robots
- DOI:
10.1007/s41315-023-00274-2 - 发表时间:
2023-02-22 - 期刊:
- 影响因子:1.7
- 作者:
Tamizi, Mehran Ghafarian;Yaghoubi, Marjan;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
Droplet sensing by measuring the capacitance between coplanar electrodes in a digital microfluidic system
- DOI:
10.1039/c2lc40647k - 发表时间:
2012-01-01 - 期刊:
- 影响因子:6.1
- 作者:
Bhattacharjee, Biddut;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
A Survey of Robot Learning Strategies for Human-Robot Collaboration in Industrial Settings
- DOI:
10.1016/j.rcim.2021.102231 - 发表时间:
2021-07-31 - 期刊:
- 影响因子:10.4
- 作者:
Mukherjee, Debasmita;Gupta, Kashish;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
Najjaran, Homayoun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Najjaran, Homayoun', 18)}}的其他基金
Extended reality (XR) work-cell for safe human-centered robotics research
用于安全以人为本的机器人研究的扩展现实 (XR) 工作单元
- 批准号:
RTI-2023-00418 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Research Tools and Instruments
AIARA: Artificial Intelligence Enabled Highly Adaptive Robots for Aerospace Industry
AIARA:人工智能为航空航天工业提供高度自适应机器人
- 批准号:
543881-2019 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Collaborative Research and Development Grants
Detection system for screening of Household Hazardous Waste (HHW) in recycling facilities
用于筛选回收设施中的家庭危险废物 (HHW) 的检测系统
- 批准号:
570376-2021 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Alliance Grants
Safe and Robust Autonomous Vehicle Technology
安全稳健的自动驾驶汽车技术
- 批准号:
RGPIN-2017-06767 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Responsive and Robust Object Detection for Industrial Point Cloud Applications
适用于工业点云应用的响应灵敏、鲁棒的物体检测
- 批准号:
567583-2021 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Alliance Grants
Integration of AI into Manufacturing Execution System (IMES)
将人工智能集成到制造执行系统 (IMES)
- 批准号:
555220-2020 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Alliance Grants
AIARA: Artificial Intelligence Enabled Highly Adaptive Robots for Aerospace Industry
AIARA:人工智能为航空航天工业提供高度自适应机器人
- 批准号:
543881-2019 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Collaborative Research and Development Grants
Integration of AI into Manufacturing Execution System (IMES)
将人工智能集成到制造执行系统 (IMES)
- 批准号:
555220-2020 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Alliance Grants
Detection and classification of plant pots in real time using artificial intelligence methods for mobile manipulators used in nursery farms and greenhouses
利用人工智能方法对苗圃和温室中使用的移动机械手进行花盆实时检测和分类
- 批准号:
538450-2019 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Engage Grants Program
AIARA: Artificial Intelligence Enabled Highly Adaptive Robots for Aerospace Industry
AIARA:人工智能为航空航天工业提供高度自适应机器人
- 批准号:
543881-2019 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
强壮前沟藻共生细菌降解膦酸酯产生促藻效应的分子机制
- 批准号:42306167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高效率强壮消息鉴别码的分析与设计
- 批准号:61202422
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
- 批准号:61271414
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
半定松弛与非凸二次约束二次规划研究
- 批准号:11271243
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
民航客运网络收益管理若干问题的研究
- 批准号:60776817
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:联合基金项目
相似海外基金
Autonomous Robust & Rapid Processes for the Machining of Aerospace Specific Parts & Components
自主稳健
- 批准号:
10052735 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
BEIS-Funded Programmes
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235232 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
CAREER: Robust and Autonomous Robot Adaptation in Novel Scenarios
职业:新场景中鲁棒且自主的机器人适应
- 批准号:
2237693 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
Robust and autonomous machine learning on board a miniature satellite
微型卫星上的鲁棒自主机器学习
- 批准号:
NI220100072 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
National Intelligence and Security Discovery Research Grants