Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
基本信息
- 批准号:RGPIN-2015-03813
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The importance of energy in portable stored form to any modern society can be easily appreciated from the need for powering the ever increasingly popular portable electronics (using stored chemical energy) to automobiles (using stored fossil fuel). However, the environmental impact and the finite supply of the portable energy acquired from burning fossil fuels have caused concerns about the sustainability of the current development mode. On the other hand, it is recognized that the clean and renewable energy sources (solar radiation, wind, and waves etc.) are variable in time and diffuse in space, therefore these sources require energy storage for efficient usage. Lithium-ion battery technology has dominated the portable stored energy supply for portable electronics and now it faces the challenge for powering effective HEVs and EVs. Higher energy density lithium-ion battering will be needed to fullfil such need and to this end the importance of cathode material has been widely recognized. In this research we propose to study the structural properties of orthosilictes cathode material Li2MSiO4 (M=Fe, Mn, Co or mixture) which have a theoretical energy capacity significantly higher than that of the more developed or commercialized cathode materials such as the layered oxides LiMO2 (M=Co, Mn, Ni or mixture), spinel oxides LiM2O4 (M=Mn, Ni or mixture), and olivine phosphates LiFePO4. However to reach that potential means to be able to reversibly extract/insert more than one lithium ions from/into per cation unit while maintaining the nanocomposite structural integrity. The challenge of engineering the nanocomposite structure to overcome some of the fundamental destabilizing quantum mechanical effects is what motivates the proposed research. In the proposed research, we aim to contribute to the knowledge of atomic and electronic structure of nanocomposites made from members of the orthosilicate family, Li2MSiO4 (M=Fe, Mn or a mix of the two), for a fundamental understanding of the electrochemistry of such nanomaterials. We will be using a suite of synchrotron radiation techniques to carry out in situ and ex situ measurements of the nanomaterials and developing relevant analysis methods to correlate the structural information such as metal oxidation states, site coordination and symmetry, nanocrystalline phase and phase transition sequence, and interface states/structure to provide a coherent understanding of the electrochemistry behaviour of the lithium-ion battery cathode materials. Structural information to be acquired from the proposed research will be crucial to the synthesis chemists, nanoscientists and materials scientists to fabricate the next generation of high energy density rechargeable lithium-batteries for the electrical vehicles of the future. **
从为日益流行的便携式电子产品(使用储存的化学能)到汽车(使用储存的化石燃料)提供动力的需求,可以很容易地认识到便携式存储形式的能源对任何现代社会的重要性。然而,环境影响和有限。燃烧化石燃料获得的便携式能源的供应引起了人们对当前发展模式可持续性的担忧。另一方面,人们认识到清洁和可再生能源(太阳辐射、风能和波浪等)是可变的。在时间上并在空间上扩散,因此这些来源需要锂离子电池技术在便携式电子产品的便携式储能电源中占据主导地位,现在面临着为高效混合动力汽车和电动汽车提供动力的挑战,需要更高能量密度的锂离子电池来满足这种需求。为此,正极材料的重要性已得到广泛认可,在本研究中,我们建议研究具有理论能量的正硅酸盐正极材料Li2MSiO4(M=Fe、Mn、Co或混合物)的结构特性。比更发达或商业化的正极材料如层状氧化物LiMO2(M=Co、Mn、Ni或混合物)、尖晶石氧化物LiM2O4(M=Mn、Ni或混合物)和橄榄石磷酸盐LiFePO4更高的容量。这种潜力意味着能够可逆地从每个阳离子单元中提取/插入多个锂离子,同时保持纳米复合材料结构的完整性。设计纳米复合材料结构以克服一些基本的不稳定量子力学效应是本项研究的动机。在本项研究中,我们的目标是为了解由正硅酸盐家族成员 Li2MSiO4 制成的纳米复合材料的原子和电子结构做出贡献。 (M=Fe、Mn 或两者的混合),为了对此类纳米材料的电化学有基本的了解,我们将使用一套同步加速器辐射技术来进行。纳米材料的原位和非原位测量,并开发相关的分析方法来关联结构信息,如金属氧化态、位点配位和对称性、纳米晶相和相变序列以及界面态/结构,以提供对电化学行为的连贯理解从拟议的研究中获得的结构信息对于合成化学家、纳米科学家和材料科学家制造下一代高能量密度可充电电池至关重要。未来电动汽车的锂电池**。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang, DeTong其他文献
Jiang, DeTong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang, DeTong', 18)}}的其他基金
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
- 批准号:
RGPIN-2015-03813 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
- 批准号:
RGPIN-2015-03813 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
- 批准号:
RGPIN-2015-03813 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
- 批准号:
RGPIN-2015-03813 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
- 批准号:
RGPIN-2015-03813 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
- 批准号:
RGPIN-2015-03813 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
- 批准号:
RGPIN-2015-03813 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
- 批准号:
RGPIN-2015-03813 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Structure function relationship in electronic thin films
电子薄膜中的结构函数关系
- 批准号:
327159-2009 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Structure function relationship in electronic thin films
电子薄膜中的结构函数关系
- 批准号:
327159-2009 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于手性胺诱导的极性二维卤化物钙钛矿的设计合成及其自驱动X射线探测性能研究
- 批准号:22305105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
- 批准号:42304060
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
极高能峰BL Lac天体高能伽玛射线能谱产生机制研究
- 批准号:12363002
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
线粒体自噬受体NDP52的SUMO化修饰在低剂量X射线诱发心脏损伤中的作用和机制研究
- 批准号:82304076
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
2D/3D钙钛矿单晶异质结构的可控生长及X射线探测性能研究
- 批准号:62305128
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
- 批准号:
2320309 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
- 批准号:
RGPIN-2015-03813 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual